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Abstract—Today’s scientific applications and advanced instru-
ments are producing extremely large volumes of data everyday,
so that error-controlled lossy compression has become a critical
technique to the scientific data storage and management. Ex-
isting lossy scientific data compressors, however, are designed
mainly based on error-control driven mechanism, which can-
not be efficiently applied in the fixed-ratio use-case, where a
desired compression ratio needs to be reached because of the
restricted data processing/management resources such as limited
memory/storage capacity and network bandwidth. To address
this gap, we propose a low-cost compressor-agnostic feature-
driven fixed-ratio lossy compression framework (FXRZ). The
key contributions are three-fold. (1) We perform an in-depth
analysis of the correlation between diverse data features and
compression ratios based on a wide range of application datasets,
which is a fundamental work for our framework. (2) We propose
a series of optimization strategies that can enable the framework
to reach a fairly high accuracy in identifying the expected
error configuration with very low computational cost. (3) We
comprehensively evaluate our framework using 4 state-of-the-art
error-controlled lossy compressors on 10 different snapshots and
simulation configuration-based real-world scientific datasets from
4 different applications across different domains. Our experiment
shows that FXRZ outperforms the state-of-the-art related work
by 108×. The experiments with 4,096 cores on a supercomputer
show a performance gain of 1.18∼8.71× than the related work
in overall parallel data dumping.

Index Terms—Lossy Compression, Scientific Data Manage-
ment, Machine Learning, Data Features

I. INTRODUCTION

With ever-advancing scientific research, how to efficiently

access and manage science data is critical to many today’s sci-

entific projects across different domains. In practice, scientific

application users often use dedicated libraries or data formats

such as HDF5 [1], ADIOS2 [2] and NetCDF [3] to store,

manage and transfer the scientific data for efficient post-hoc

analysis. These libraries or data formats are highly preferred

by scientific users because of the high efficiency in multi-

objective data query, management and storage/access. Multiple

database systems or drivers (such as RESTful HDF5 [4] and

HDF5 ODBC driver [5]) have also been developed to support

such scientific data formats.

Corresponding author: Sheng Di, MCS Division, Argonne National Labo-
ratory, 9700 Cass Avenue, Lemont, IL 60439, USA

Unlike the traditional data management, a grand challenge

for the scientific data management is its vast volume of

data to manage, store and transfer. In fact, extremely large

volume of data are generated by today’s scientific applications

or instruments during their simulations or data acquisition.

For example, Cosmological simulations such as Nyx [6] can

produce hundreds of petabytes of data for each run. Such

vast amount of generated data poses a significant challenge to

store, process or transfer because of limited memory capacity,

storage space, and network/I/O bandwidth [7], [8]. Thus,

dramatically compressing such vast amount of data to better

utilize available compute resources is a key focus at today’s

scientific data management.

Significant efforts have been put in resolving the big sci-

entific data issue by data compression techniques. On the

one hand, multiple libraries/toolkits (such as H5Z filter [9]

and pNetCDF-SZ [10]) have been developed to enable the

scientific data libraries/formats (HDF5, ADIOS2) to support

transparent lossless and lossy compression for users. On the

other hand, error-bounded data compressors [11]–[13] have

been developed for scientific datasets in the past decade, as

not only can it obtain high compression ratios but also it can

provide high fidelity based on user-specified error bound.

To optimize data management, storage, or transfer perfor-

mance, an efficient ‘fixed-ratio compression mechanism’ is

critical in practice. Specifically, the systems or management

tools often need to perform the data compression with the

data size under control. For instance, users often need to

archive, store, or transfer large amount of data locally or

remotely [14], thus they need to control the compressed data

size strictly according to the limited available resources such

as memory capacity, I/O bandwidth and storage capacity [15],

[16]. Existing error-bounded lossy compressors [12], [17]–

[19] offer multiple types of error controls such as absolute

error bound, relative error bound and peak signal-to-noise ratio

(PSNR) to compress data, but unfortunately cannot compress

data based on a target compression ratio required by users.

FRaZ [20] is the first attempt working on the generic fixed-

ratio lossy compression framework, but it suffers from very

high computational cost (one order of magnitude or more)

compared with the compression time, because of its expen-

sive trial-and-error based iterative search method. Thus, it is
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challenging to apply FRaZ in online in-situ use-cases.
In this paper, we propose a low-cost compressor-agnostic

feature-driven fixed-ratio lossy compression framework, which

faces a series of challenges to resolve. (1) For given datasets,

we need to extract effective data features that can exploit

diverse data characteristics such as data smoothness, data

distribution, special pattern to project data compressibility.

(2) Developing an efficient compressor-agnostic framework

is non-trivial because there are many state-of-the-art error-

controlled lossy compressors which exhibit largely different

compression qualities with each other because of their dis-

tinct design principles. It is very challenging to develop a

compressor-agnostic framework to characterize the correlation

between various data features and diverse compressors’ qual-

ities. (3) State-of-the-art lossy compressors permit to input an

error bound setting to obtain a compression ratio but not the

other way around, and different lossy compressors demonstrate

distinct compressibilities for the same dataset. Brute-force

search through the exhaustive range of error bound settings

would be very expensive, in order to obtain a compression

ratio that is very close to the target compression ratio.
To address the above challenges, we propose an efficient

compressor-agnostic Feature-driven fixed-ratio lossy com-
pression framework (called FXRZ), which can determine the

best-qualified error bound setting based on a user-specified

target compression ratio, by efficiently extracting/analyzing

data features at runtime. The key contributions are three-fold:

• To the best of our knowledge, we are the first to propose a
low-cost feature-driven compressor-agnostic lossy com-
pression framework, by leveraging the correlation be-

tween the data features and lossy compressor’s quality

to efficiently estimate the qualified error bound setting

for the target compression ratio.

• We carefully investigate diverse data features and identify

their effectiveness to the projection of compression ratios.

• We propose a series of optimization strategies ( e.g.,

a novel technique to adjust target compression ratio to

project the data compressibility more accurately) that

significantly improves the model accuracy based on target

compression ratio with very little computational cost.

We evaluate our proposed FXRZ framework using variety of

simulations and snapshot datasets from 4 real-world scientific

applications across different domains. We perform the exper-

iments based on multiple state-of-the-art lossy compressors

such as SZ, ZFP, FPZIP, and MGARD+ and also compare

our solution with another state-of-the-art related work – FRaZ

[20]. Experiments show that our solution has a high accuracy

(with only 8.24% estimation error on average) in estimating

the required error bound setting based on a target compression

ratio. FXRZ outperforms the FRaZ by 108× with the compa-

rable accuracy. On a supercomputer, the overall parallel data

dumping under FXRZ is substantially faster than that of FRaZ

with a performance gain of 1.18∼8.71×.
The rest of the paper is organized as follows. In Section

II, we discuss related work. In Section III, we propose and

formulate our research problem. In Section IV, we detail our

framework FXRZ. In Section V, we present the evaluation

results with an in-depth analysis. Finally, we conclude and

envision the future work in Section VI.

II. RELATED WORK

Existing error-controlled lossy compressors. There have

been many error-controlled lossy compressors developed for

scientific datasets, such as SZ [11], [18], [21], ZFP [12],

FPZIP [19], MGARD+ [13]. Their designs are driven by the

error-control model, so the fixed-ratio compression cannot

be carried out directly or efficiently. The key reason is that

lossy compressors often leverage some sophisticated entropy

encoder or dictionary encoder such that the final compression

ratios are very hard to estimate accurately. SZ, for instance,

depends on Huffman encoding and dictionary encoding (Zstd

[22]). To the best of our knowledge, ZFP is the only lossy com-

pressor supporting fixed-ratio compression. However, ZFP’s

fixed-ratio mode (a.k.a., fixed-rate) suffers from much lower

compression ratio (e.g., ∼2× lower compression ratio at the

same data distortion level) compared with its fixed-accuracy

mode, which has been validated by prior studies [20].

Existing compression ratio estimation methods. The

fixed-ratio compression problem can be transformed to the

compression ratio estimation in some sense, thus we also

investigate the related works about lossy compression ratio

estimation. In fact, if the compression ratio can be estimated

efficiently based on any given error-control method (e.g., error

bound), fixed-ratio compression can be realized by a search

algorithm (e.g., binary search) with a searching cost to a

certain extent. Lu et al. [23] explored how to estimate the com-

pression ratio based on a given error bound for SZ and ZFP in

particular, by leveraging these two compressors’ characteristics

obtained from their empirical studies. Tao et al. [24] developed

a method to estimate the compression ratio for SZ and ZFP

based on peak signal-to-noise ratio (PSNR), which is a more

commonly used metric in the compression community. Liang

et al. [25] proposed a hybrid lossy compression framework

by integrating ZFP as one predictor in the SZ compression

framework, which can improve the overall compression quality

in turn. In their framework, one critical step is selecting the

better data predictor (either SZ or ZFP) at runtime based on

the estimated compression ratios for the two compressors. All

the above compression ratio estimation methods, however, rely

on the in-depth investigation of the specific lossy compressors’

working principles. This is a serious drawback in that they

cannot be adaptive to any new lossy compressor with emerging

techniques.

Existing generic fixed-ratio lossy compression frame-
work. The only related work in this category is FRaZ [20] –

a generic fixed-ratio compression framework. FRaZ searches

the best-fit configuration based on a given target compression

ratio for any lossy compressor, however, it suffers from very

high search cost (one order of magnitude or higher compared

with compression time). The key reason is that it needs to

run the lossy compressors on the full dataset iteratively in

order to get a high estimation accuracy. As such, FRaZ is only
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suitable for the offline analysis but not for the real-time usage.

By comparison, our solution FXRZ is a low-cost fixed-ratio

lossy compression framework, which can obtain the required

configuration without running the lossy compressor at all. So,

it can be applied to real-time usecases, such as fixing ratio for

data transfer at runtime.

III. PROBLEM FORMULATION AND USE-CASES

A. Problem Formulation

Recall that any error-controlled lossy compressor is driven

by a given error bound/configuration setting but not the

other way around – cannot be executed based on a given

compression ratio. Our framework FXRZ aims to fill this

gap. Given a multi-dimensional scientific dataset D, an error-

controlled lossy compressor C (SZ, ZFP, FPZIP or MGARD+),

and a target compression ratio (denoted TCR), our framework

FXRZ extracts the key data features from the dataset D and

estimates an error bound setting Ep, under which the measured

compression ratio (denoted MCR) would be close enough to

the target compression ratio (TCR). Finally, we compare MCR
with TCR to verify the accuracy of FXRZ. Therefore, for a

given D, a C and a TCR, our research objective is to minimize

the difference between MCR and TCR – that is min(|MCR-

TCR|) – with very low performance overhead.

Such a fixed-ratio feature-driven compression framework

can benefit many scientific users in practice. In fact, each

scientific application package nowadays (such as Nyx [26],

QMCPack [27], RTM [28]) is generally serving many users

worldwide. That is, the training triggered by one user is

expected to benefit many other users in the similar domain.

B. Discussion of Use-Cases

Scientific data management is composed of multiple compli-

cated phases in the entire data acquisition and analysis, also

depending on user’s diverse use-cases. In what follows, we

describe several real-world use-cases regarding our FXRZ.

• Preserving best data quality based on restricted data
transfer bandwidth. In the materials science, the advanced

instruments such as LCLS-II [29] and APS-U [30] gener-

ate an extremely large volume of ptychography data (up

to 250 GB/s in the raw data acquisition [31]), and these

data need to be transferred to the data server through

a relatively low-bandwidth I/O or network. Accordingly,

the materials scientists have specific requirements on the

minimum compression ratios (generally 10+ [31]) for the

qualified lossy compression methods.

• Preserving best data quality based on limited storage
space. Many scientific applications such as cosmology

research [26], [32] may produce vast amount of data

(from hundreds of TBs to dozens of PBs for each run)

during the simulations. However, supercomputing users

always have limited storage spaces on a supercomputer

(e.g., 10TB for a regular user from ANL Theta [33] and

50TB for a regular user from ORNL Summit [15], [34]),

so that they have to perform a lossy compression with a

minimum compression ratio to store such a large amount

of data in practice.

• Preserving best data quality based on limited memory
capacity. Our proposed low-cost feature-driven fixed-

ratio framework can also benefit the in-memory data

processing at runtime. Quite a few scientific applications

require a fairly large memory capacity to deal with

large problem size. Quantum computing simulations, for

example, may require up to 32EB of memory [35] when

running a simulation with 61 qubits on a supercomputer.

Considering the restricted memory capacity, the users

have to compress the data in memory and reconstruct

them when needed during the simulation, in order to

avoid the out-of-memory crash.

IV. FEATURE-DRIVEN FIXED-RATIO ERROR-CONTROLLED

LOSSY COMPRESSION FRAMEWORK (FXRZ)

In this section, we describe FXRZ (available at https:

//github.com/hasanur-rahman/FXRZ). We first present the de-

sign overview and then describe how we resolve a series of

challenges and optimize the performance.

A. Design Overview

The fundamental design idea is to explore the key data

features from the real-world scientific datasets and apply

effective augmentation technique to quickly generate ample

compression results (without running the compressor) and

then adopt an ML model to estimate the best-qualified error

configuration for a target compression ratio (at runtime).

Fig. 1: Design Architecture of Our Framework (FXRZ)

The FXRZ is composed of several key modules, as shown

in Fig. 1. The feature extraction module is developed for

extracting the feature vector, which is used to construct the

ML model during the training stage ( 2 ) and also to decide

the best-qualified error bound setting during the inference

stage ( 9 ). The data augmentation step is to augment the

compression results which are generated by running differ-

ent lossy compressors ( 1 and 3 ). Optimization such as

adjustment in target compression ratio is applied in 4 . The

training engine is the kernel module that takes over the ML

training work based on the three parts of information: extracted

feature vector ( 4 ), augmented compression results ( 5 ) and
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corresponding configuration parameters ( 6 ), and optimizes

the error bound estimation based on our dynamic target ratio

adjustment method ( 7 ). After generating the well-trained ML

model ( 8 ), the inference engine will be launched to decide

the best-qualified error configuration setting to reach the target

compression ratio in terms of the runtime-extracted feature

vector ( 10 ).

We propose two levels to assess the capability of FXRZ,

based on training datasets versus runtime datasets.

• Capability Level 1: Accurate decision across different
time steps based on the same application model with the
same simulation configuration. In this situation, we focus

on the same application model with unchanged simulation

configuration. Specifically, the users train the model using

prior set of snapshot data and their corresponding lossy

compression results, and then use the trained model to

make decisions for latter snapshot data with different

time steps. A typical example is training the model using

the snapshots 1 - 30 from Hurricane Isabel simulation

[36] and test the decision accuracy based on the latter

snapshots such as 48.

• Capability Level 2: Accurate decision across different
simulation configurations within the application model.
Level 2 is very practical, in that every application model

or package (such as QMCPack [27], Nyx [26]) have mul-

tiple users with different research purposes. In general,

these users are using the same application package/model

but running the simulation with distinct configurations.

In this situation, FXRZ is expected to make accurate

decisions for a user given dataset using the model trained

by the datasets generated by other users.

B. Data Augmentation based on Interpolation

We know that a ML model requires a fair amount of

samples in the training. Whereas, generating a large number

of compression result samples by running lossy compressors

is very expensive, because the training stage requires as many

different datasets and different error bound settings as possi-

ble, which would inevitably result in numerous compression

operations to execute.

To resolve this issue, we propose a data augmentation

method that can effectively expand the limited number of

compression results to reach the expected amount of training

samples for FXRZ. Our main observation is that the com-
pression ratios within similar error bound range are very
close with each other for a lossy compressor. As such, we

augment the compression result samples by leveraging linear

interpolation (or least-square method). Specifically, we first

run the specified compressor for a couple of representative

error bound settings to generate a certain number of com-

pression ratios. These results will be treated as stationary
points, based on which we can produce the more compression

ratio results by the linear interpolation method. Such an

augmented compression result curve forms an error bound

setting function of compression ratio, so that an expected error

bound can be interpolated for any given compression ratio

(on the curve) in the training stage. We further illustrate our
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Fig. 2: Illustrating Linear Interpolation of Compression Results

based on Nyx Simulation Datasets

idea by Fig. 2. To save space, we give only two examples

from two representative compressors, SZ and ZFP, for Nyx

Baryon density field dataset. The datasets and compressors

will be discussed in details in Section V-A2 and V-A3. The

points on the curves are the stationary points and the curves

represent the interpolated curves. Stationary points (measured

compression ratio, error bound) are generated by running the

respective compressor at uniformly spanned, on average, 25

different error bound settings. As aligned with our observation,

Fig. 2 shows us that compression ratios are close between

two consecutive stationary points where corresponding error

bounds are close. Hence, by leveraging the interpolated curve,

we can estimate the error bound setting for any given com-

pression ratio in the range of stationary points. For example,

with Baryon Density, we get the error bound of ∼0.1 for

compression ratio 270 on SZ, and the error bound of ∼0.2

for the compression ratio 33 on ZFP. It is worth noting that

ZFP’s interpolated result follows a stairwise curve, since ZFP’s

compression ratio increases piecewisely with the error bound

because of its coefficient bitplane truncation. Although the

relationship between error bound and compression ratio is not

linear [20], we find the relationship to be approximately linear

between two consecutive stationary points. In fact, the average

percentage difference between measured compression ratios

from interpolated error bounds (Y-axis) and given compression

ratios (X-axis) is only 3.04%, 3.96%, 5.48%, 4.34% for the

four respective compressors SZ, ZFP, FPZIP, MGARD+ across

all applications.

C. Features Extraction

Without effective feature characteristics, FXRZ may suffer

from very poor accuracy. We examine eight different features

for our analysis. We describe these features and their varying

impact on data compressibility as follows.
lorenzoi,j = di−1,j + di,j−1 − di−1,j−1 (1)

lorenzoi,j ,k =di−1,j,k+di,j−1,k+di,j,k−1 −di−1,j−1,k

−di,j−1,k−1−di−1,j,k−1+di−1,j−1,k−1

(2)

splinei = − 1

16
di−3 +

9

16
di−1 +

9

16
di+1 − 1

16
di+3 (3)
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• Value Range: It refers to the value range of a dataset,

indicating how much the data deviates in the dataset (or

the amplitude of the dataset).

• Mean Value: Mean value refers to the average of all the

data points in a dataset.

• Mean Neighbor Difference (MND): Mean neighbor

difference is obtained by first calculating the absolute

difference of current data value and the average of its

neighbor values, and then computing the mean of all the

absolute differences.

• Mean Lorenzo Difference (MLD): MLD is denoted by

the average of absolute difference between data value and

its Lorenzo prediction. Equation (1) and (2) demonstrate

how the Lorenzo prediction is performed for a data

point ((i,j) or (i,j,k)) in a 2D dataset and 3D dataset,

respectively.

• Mean Spline Difference (MSD): The MSD feature

is calculated as the mean of a specific cubic spline-

interpolation fitting error for all data points in the

dataset. Equation (3) demonstrates how the cubic spline-

interpolation fitting is calculated for a data point in a

1D dataset. Similarly, for a multi-dimensional dataset,

Equation (3) is used to calculate splinei along each

dimension separately, and obtain the average value A
across all dimensions. Finally, we consider the difference

between current data value and A as MSD value for the

current data point.

• Other features: We also explore other features including

Mean Gradient, Min Gradient, Max Gradient. Gradient

denotes the difference between current data value and its

previous data value. But gradient-based features often can

not capture smoothness of data values in a dataset. We

further give the reason and establish this claim when we

discuss the Table II.
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Fig. 3: Compression Ratios across Different Datasets and

Compressors under an error bound.

TABLE I: Feature Values across Different Datasets

Feature Nyx Baryon QMCPack RTM RTM Hurricane
Density BigScale SmallScale BigScale TC

Value Range 4.90 35.36 0.16 0.05 104.81

Mean Value 0.97 16.75 0.09 0.02 45.63

MND 0.01 0.29 1.1E-4 5.5E-5 0.67

MLD 0.31 0.30 9.2E-5 4.0E-5 31.30

MSD 8.4E-3 0.33 1.3E-4 6.1E-5 0.79

Investigation of Relationships between Data Features and
Compressibility: We now explain how we develop these data

features in terms of their characteristics, by analyzing the

relationships between these features and the compressibility

across different datasets. We refer to Fig. 3 and Table I to

explain the relationship under a fixed error bound e. We

show five datasets from four applications because of space

limit. Other datasets show similar characteristics. In Fig. 3,

x-axis denotes the dataset, and y-axis shows corresponding

compression ratios under e with different compressors. Table I

shows the feature values across those datasets.

Value Range and Mean Value reveal the amplitude and

spreadness of data values in a dataset. By comparing Fig. 3

and Table I, RTM datasets have smaller Value Range (0.16

and 0.05) than other datasets have but show much higher

compression ratios for different compressors. Smaller Value
Range indicates that the data values in a dataset tend to be

close to each other, which makes it easier for the compressors

to compress. But only Value Range cannot always reflect

the above relationship as we can see by comparing the Nyx

and Hurricane datasets’ Value Range with compression ratios.

More specifically, although Value Range of Nyx is lower than

that of Hurricane, Nyx’s compression ratios are still lower

than those of Hurricane, which can be reasoned about with the

Mean Value feature. Mean Value of Hurricane dataset follows

its Value Range more closely than Nyx does: the ratio of Value
Range to Mean Value for Hurricane is lower than that of Nyx.

This implies that data values in Hurricane dataset are actually

closer than those in Nyx. Hence, combined effect of Value
Range and Mean Value reflects true data spreadness.

Moreover, MND and MLD reveal the spatial data smooth-

ness in a dataset. The less value of MND and MLD indicates

higher data smoothness, hence higher compression ratio be-

cause of ease of compression by compressors. By comparing

Fig. 3 and Table I, the less MND and MLD values are, the

more compressible the datasets are. As MND is based on only

neighbor data values, it can reflect the local data smoothness

well. In contrast, MLD is based on large regions of data values,

hence it can reflect the overall data smoothness in a dataset.

Hence, both features can complement each other well. Finally,

MSD feature is particularly effective in detecting the wave

textures/patterns, which are very common in many scientific

datasets [37], e.g., RTM, Hurricane, QMCPack datasets. In

Fig. 4, we show an example of such textures present in RTM

dataset. By comparing Fig. 3 and Table I, RTM datasets show

less MSD values than others. Less MSD values reflect more

smooth wave textures, hence RTM datasets show relatively

higher compression ratios across different compressors.

We now quantify the relationship between the features and

data compressibility. We first obtain compression ratios of

different snapshots or simulation configurations of a dataset

based on a particular compressor with the same error bound

setting. We then calculate different features for each of those

datasets with different snapshots/configurations. Then, for

each compressor, we calculate the average Pearson Product-

Moment Correlation Coefficients [38] for different datasets
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Fig. 4: Wave Texture in RTM simulation Data

across different error bounds in order to investigate the corre-

lation between the features and data compressibility. We apply

different error bounds on datasets, which can obtain a high di-

versity of the compressibility, such that the correlation analysis

would be accurate and effective. We show such correlations

in Table II. As shown in the Table, Value Range, Mean Value,

MND, MLD, MSD are the most correlated features. Hence,

we adopt these five features for FXRZ. Also, we can see that

gradient-based features exhibit the least correlation. On the one

hand, the Max Gradient is too sensitive to the data changes in

space. On the other hand, Min Gradient and Mean Gradient
are too mild to indicate the data change because the scientific

data are quite smooth in most of regions in general (as shown

in Fig. 4). As such, the gradient-based features are excluded.

TABLE II: Average Correlation Coefficent between Corre-

sponding Feature and Compression Ratio across Different

Datasets for Different Compressors

Comp. Value
Range

Avg.
Value

MND MLD MSD Mean-
Gradient

Min-
Gradient

Max-
Gradient

SZ 0.73 0.71 0.69 0.64 0.70 0.54 0.54 0.47

ZFP 0.65 0.61 0.64 0.64 0.65 0.47 0.54 0.50

FPZIP 0.60 0.67 0.77 0.80 0.75 0.46 0.39 0.20

MGARD+ 0.62 0.64 0.70 0.60 0.70 0.43 0.31 0.47

D. ML Model Selection

For any dataset, we utilize 5 extracted features and a target

compression ratio as input for the ML model. During inference

phase, the model predicts expected error bound setting.

The Classifier models are not suitable for our framework,

because classifiers generally focus on discrete states or classes

of the results while error control configurations (FXRZ out-

puts) are often continuous values in practice. For instance,

error bound values could be any floating-point number.

TABLE III: Average Estimation Error Based on Target Com-

pression Ratios with RFR, AdaBoost and SVR model

Comp.
Nyx Velocity-X QMCPack BigScale Spin0 RTM BigScale Snapshot-800

RFR AdaBoost SVR RFR AdaBoost SVR RFR AdaBoost SVR

SZ 10.17% 31.59% 111.17% 1.52% 71.21% 82.89% 13.88% 28.79% 97.46%

ZFP 4.68% 20.18% 74.12% 2.59% 40.57% 40.99% 3.71% 41.61% 125.13%

We select three popular ML models to apply on our frame-

work FXRZ. For all of them, we use k-fold cross validation

to tune the hyperparameters and improve the performance.

We show the average estimation errors (defined in Formula

5) for ML models in Table III. 1) Support Vector Regressor
(SVR) [39] is a counterpart of Support Vector Machine (SVM)
and accepts non-linearity in the data for regression analysis.

But we find SVR is not a good fit for our problem setting, in

terms of the average estimation errors as shown in Table III.

According to the table, based on three example datasats with

two representative compressors (SZ and ZFP), the SVR suffers

from very high estimation errors than the other two. The

key reason is that the bestfit error configurations are not

sometimes sufficiently separable enough to build hyperplanes

to differentiate distinct compression ratio results. 2) AdaBoost
Regressor [40] is a meta-estimation technique. As shown in

Table III, AdaBoost suffers from relatively higher average

estimation error. We find that AdaBoost suffers from high

estimation errors when target compression ratios (and their

corresponding expected error configurations) are relatively

lower. The possible reason could be those lower error con-

figurations in training data are very close to each other and

tiny changes in expected error bound settings from the lower

range might not be captured well by AdaBoost regression. So,

this is also not a good fit for our problem setting. 3) Random
Forest Regressor (RFR) [41] is a good fit to our problem

setting because it has the special ability to correct overfitting

problem by building lots of trees. As shown in Table III, RFR’s

average estimation error is lowest among three. Hence, we

adopt RFR for the analysis in FXRZ, in terms of data features

and augmented lossy compression results.

E. Optimization of Performance and Accuracy

In this section, we describe our optimization strategies

which aim to further boost the execution performance and also

improve the model accuracy.

1) Uniform Sampling for Feature Extraction: In order to

avoid scanning the full dataset to calculate the feature, we

calculate the features based on uniformly stride-K sampled

data points (shown in Fig. 5), which are selected every K data

points along each direction. In our experiments, the sampled

data take only 1.50% of total data points (stride=4 in the

sampling), which can still obtain a high accuracy for our

solution (shown in Sec V-F). On average, across all datasets

and compressors, FXRZ with 1.5% sampling, and considering

all data points (100% sampling) yield average estimation errors

of 8.24%, and 6.23% respectively. As we see, 1.5% sampling

yield similar estimation error compared to 100% sampling but

make FXRZ much faster because of less amount of sampling.

In fact, such a sampling method (1.5%) makes the analysis

time take only 1
50× of the analysis time when using all data

points, which significantly speeds up the overall analysis of

our framework FXRZ.

2) Adjusting Target Compression Ratio for Better Accuracy:
We observe that overall compression ratio of a dataset is often

very sensitive to the area of the smooth region in space.

These smooth regions are generally very easy to compress

with extremely high compression ratios, hence they contribute

to overestimation of the true compressibility of a dataset by

not revealing accurate data density in the dataset. To achieve
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Fig. 5: 3-point Stripe Uniform Sampling

Fig. 6: Illustration of Constant/Non-constant Blocks

that, we adjust the target compression ratio by excluding the

smooth regions without loss of generality. To this end, we

introduce a novel optimization strategy that can improve the

FXRZ accuracy in estimating error configuration, by adjusting

the target compression ratio based on the density of the data,

which we call Compressibility Adjustment (CA). Specifically,

For that, we split the whole dataset into many small blocks

(e.g., 4×4×4 for 3D datasets in our experiment). If a block has

very small deviation (its value range is lower than a threshold),

we call it a constant block; otherwise, it is a non-constant
block. How to determine the value range threshold will be

discussed later. Fig. 6 illustrates the constant blocks and non-

constant blocks using an example dataset (Nyx Temperature

of size 512×512×512).

We explain the calculation of the adjusted compression ratio

as follows. To avoid the over-adjustment, we need to make sure

the data values within each constant block are fairly close with

each other (i.e., the value range threshold is relatively small).

Consequently, their output data size is assumed to be 0 after

compression without loss of generality. In other words, the

compressibility of a dataset is only determined by the non-

constant blocks. As such, the adjusted compression ratio is

calculated as Formula (4).

ACR = TCR×R (4)

where TCR refers to the user-specified target compression

ratio, ACR denotes the adjusted compression ratio, and R is

the percentage of the non-constant blocks in given dataset.

Accordingly, we convert the input TCR to ACR before feeding

into the ML model. Using ACR helps obtain much higher

accuracy, to be validated in Section V-E.

To measure R, we need to find a proper value range

threshold to distinguish constant and non-constant blocks. As

mean value indicates spreadness of data values, it can be used

to determine the threshold. Thus, we use a coefficient, λ, of

mean value to obtain the threshold. As shown in Table IV, 15%

of mean value (λ=0.15) as the threshold is the optimal setting

to distinguish blocks. With the information of total number of

these two types of blocks, we finally measure R.

TABLE IV: Average Estimation Error by λ of 0.05, 0.10, 0.15

Compressor
Nyx Baryon Density QMCPack BigScale Spin0 RTM BigScale Snapshot-800

0.05 0.10 0.15 0.05 0.10 0.15 0.05 0.10 0.15

SZ 20.31% 16.76% 7.63% 2.02% 4.58% 1.52% 27.37% 15.46% 13.79%

ZFP 21.35% 22.14% 6.95% 6.56% 6.11% 2.59% 9.06% 15.63% 3.17%

Now, we verify the effectiveness of our CA design using

Fig. 7 based on SZ and ZFP, by comparing the accuracy

of FXRZ between with and without CA for Nyx Baryon

Density. We describe Nyx (Baryon Density) in Section V-A2.

The black curve of each sub-figure refers to the (TCR). The

red curve denotes MCR without CA design, whereas the blue

curve denotes MCR with CA design. Recall that the closer

the MCR to the TCR is, the more accurate our FXRZ is (see

Section III-A). Fig. 7 shows that blue curve is very close to

or even overlaps with the black curve sometimes, whereas the

red curve is often distant from the black curve. This figure

clearly shows that our novel CA strategy is very useful to the

improvement of FXRZ accuracy.
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Fig. 7: CA Optimization for Better Accuracy

V. PERFORMANCE EVALUATION

In this section, we describe our experimental setup and

present the performance evaluation results.

A. Experimental Settings

We describe the environment setting, datasets, testing com-

pressors and related works to be evaluated as follows.

1) Environment: We perform our experiments on the Intel

Broadwell nodes (Intel Xeon E5-2695v4) of ANL Bebop [42],

which is a supercomputer managed by Laboratory Computing

Research Centers (LCRC) at Argonne. Bebop is featured with

1000+ nodes connected with Omni-Path Fabric Interconnect

network. Each Intel Broadwell node has up to 128GB DDR4

and 36 cores. Its storage system is using General Parallel

File Systems (GPFS), which is equipped with two I/O nodes,

offering ∼2GB/s I/O bandwidth. This Bebop machine has

been widely used in scientific data analysis or performance

evaluation for lossy compression research such as [21], [43].

2) Datasets: We evaluate our method using multiple appli-

cation datasets from real scientific applications across differ-

ent domains. Most of the datasets can be downloaded from

the SDRBench database [44]. These datasets are frequently
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used in recent studies [37], [45]–[48]. The datasets used in

our experiments satisfy following criteria: (1) training and

testing datasets are largely different from the perspective of

compression ratio and visualization; (2) they are all drawn

from real-world scientific datasets that cover various domains

such as cosmology, weather etc; (3) they conform to the two

capability levels mentioned in Section IV-A. We describe the

datasets in Table V.

TABLE V: Description of Application Datasets

App. # Fields TSteps Dim Size Domain

Nyx-1 4 6 512×512×512 12.00GB Cosmology

Nyx-2 4 1 512×512×512 2.00GB Cosmology

QMCPack-1 1 1 288×115×69×69 0.59GB Quantum Structure

QMCPack-2 2 1 480×115×69×69 1.96GB Quantum Structure

QMCPack-3 2 1 816×115×69×69 3.33GB Quantum Structure

RTM-Small 1 7 449×449×235 1.24GB Seismic Wave

RTM-Big 1 2 849×849×235 1.26GB Seismic Wave

Hurricane 2 7 100×500×500 1.30GB Weather

As shown in the table, we glean a total of 56 different

simulation configuration and snapshot datasets from 4 scien-

tific applications across different domains. Other fields show

similar results. We perform our experiments to assess both

capability levels proposed in Section IV-A.

Capability level 1 Assessment: The Hurricane Isabel sim-

ulation dataset (shown as Hurricane in the table) is used to

assess capability level 1. We use two Hurricane Isabel fields,

QCLOUD and TC, for our experiment. For each field, we train

our framework FXRZ using the 6 time steps chosen uniformly

(5, 10, 15, 20, 25, 30) and then test the accuracy by the last

time step 48 of the corresponding fields.

Capability level 2 Assessment: We use datasets from Nyx,

RTM and QMCPack applications to assess the capability level

2. Hurricane is not included for this assessment because we

do not have multiple datasets generated by the simulation runs

with different configurations for the Hurricane Isabel. For Nyx,

we train the model by using the Nyx-1 datasets downloaded

from SDRBench database [44] and test the accuracy using

the Nyx-2 datasets downloaded from Nyx database [26], these

are generated based on different configuration settings in Nyx

simulation, which includes four critical fields: Baryon density,

Dark matter density, Temperature, and Velocity-X. For Reverse

Time Migration (RTM) application, we train the model using

7 snapshots (time step 50, 100, 200, 300, 400, 450, 500) gen-

erated by a small-scale simulation (449×449×235) and test

the model accuracy with another big-scale simulation dataset

(849×849×235). For Qmcpack, we train the model using

two small-scale datasets (QMCPACK-1 and QMCPACK-2)

of various sizes and test the model with a big-scale dataset

(QMCPACK-3). Qmcpack has two fields, Spin0 and Spin1.

3) Testing Compressors: We not only evaluate our frame-

work across different applications but also across four state-

of-the-art error-bounded compressors, including SZ [18], [21],

ZFP [12], FPZIP [19] and MGARD+ [13], as described below.

• SZ: SZ is an error-bounded lossy compressor, which has

been widely tested and used in the community.

• ZFP: ZFP is another error-bounded lossy compressor,

which has also been very efficient in lossy compression

for scientific datasets. We are using the latest released

version 0.5.5 in our experiments.

• FPZIP: FPZIP is an outstanding lossy compressor sup-

porting lossy compression, which allows users to control

the data distortion by setting a precision parameter (an

integer from 1 to 32) corresponding to different numbers

of significant mantissa bits.

• MGARD+: MGARD+ is an accelerated version of the

error-controlled lossy compressor MGARD [49].

4) Baseline: To the best of our knowledge, there is only

one existing compressor-agnostic fixed-ratio lossy compres-

sion framework, namely FRaZ [20]. FRaZ incurs very high

runtime cost because FRaZ needs to iteratively search for the

appropriate error bound setting (from the comprehensive range

of error bounds) and run the compressor with each explored

error bound setting to measure the compression ratio if this

would yield to the target compression ratio. For fairness of

comparison, the FRaZ is configured as follows: (1) for each

testing dataset, we provide FRaZ the same global search range

of error bounds (lower and upper error bounds) as we consider

for FXRZ, (2) FRaZ allows to divide the whole search range

into k bins to allow the search potentially covering as much

search space as possible (here error bound settings). We set k
to 3 to have a good balance between search coverage and max-

iterations, (3) FRaZ allows to set a max-iterations for each bin

for its search. Thus, max-iterations and number-bins together

provide us total max iterations. We evaluate FRaZ (Using

Bebop’s single node) under two different max iterations, 6

and 15, to balance its experiment time. Note that the execution

time cost by FRaZ under 15 iterations is already considerably

longer than the time cost by FXRZ. The reason is that FRaZ

needs to run the underlined compressor iteratively multiple

times to estimate the appropriate error bound setting, while our

framework FXRZ is totally compression-free. We comprehen-

sively compare FXRZ with FRaZ in different facets (such as

accuracy, performance), based on different compressors, error

bounds, and end-to-end I/O performance on Bebop.

B. Demonstration of Variability in Datasets

As mentioned previously, the datasets used in our ex-

periments exhibit different characteristics between training

datasets and testing datasets. To verify this point, we inves-

tigate the datasets from the perspective of data distribution,

visualization and standard deviation. For the sake of space,

we draw two examples from each capability level as shown in

Fig. 8 and 9. Other application datasets also exhibit distinct

data properties between training and testing datasets. Fig. 8

shows that both Hurricane QCLOUD and Nyx Baryon Density

demonstrate different data distributions between training and

test data. Fig. 9 demonstrates distinct standard deviation and

data visualization between different training and test datasets,

based on which we can also clearly observe that Hurricane

and Nyx are two largely different representative applications

with distinct natures.

1468

Authorized licensed use limited to: The University of Iowa. Downloaded on September 14,2023 at 00:02:55 UTC from IEEE Xplore.  Restrictions apply. 



-30 -25 -20 -15 -10 -5  0Pr
ob

. D
en

si
ty

 F
un

ct
io

n 
(P

D
F)

Data

Train Data
Test Data

(a) Hurricane QCLOUD(Cap.-1)

-1.5
-1 -0.5

 0  0.5
 1  1.5

 2Pr
ob

. D
en

si
ty

 F
un

ct
io

n 
(P

D
F)

Data

Train Data
Test Data

(b) Nyx Baryon Density(Cap.-2)

Fig. 8: Distribution Examples of Train and Test Data

(a) Hurricane QCLOUD
Train Data (Standard
Deviation 1.61)

(b) Hurricane QCLOUD
Test Data (Standard
Deviation 1.55)

(c) Nyx Baryon Density
Train Data (Standard Devi-
ation 0.42)

(d) Nyx Baryon Density
Test Data (Standard Devia-
tion 0.36)

Fig. 9: Visualization of Training Data vs. Testing Data To

Exemplify Their Discrepancy

C. Analysis of Data Distortion

In our evaluation, for each application dataset, we identify

the valid range of the compression ratios for users, which

corresponds to a very wide range of data distortions def-

initely covering the acceptable settings for users. In fact,

the reconstructed data generated after lossy decompression

may have largely different data distortion because of possible

considerably different user-specified error bounds.

We use an example to show the distinct reconstructed

data qualities when using different error bounds, and the

range of error bound configurations we choose for the later

accuracy analysis is very comprehensive. Fig. 10 demonstrates

the visual quality of reconstructed data by applying SZ on

Nyx(Baryon density) with a small error bound 0.05 and a

high error bound 0.4, respectively. As shown in the figure

(see zoomed region), the error bound of 0.4 suffers from a

prominently degraded visual quality compared with the error

bound of 0.05. To provide an example of practical significance,

we also analyze the distribution of halos’ locations in Nyx

Baryon Density affected by the lossy compression with various

error bounds by the Nyx analysis package [50]. Halos refer to a

cluster of particles which simulates the galaxy formation, and

this is fundamental information to more sophisticated study

in cosmology research. According to our analysis, when the

error bounds are set to 0.001, 0.05 and 0.45 respectively, the

percentages of halos mislocated from their original position

are 0.46%, 10.81% and 79.17% respectively. Such a result

(a) Original (b) Error Bound =0.05
(CR=154)

(c) Error Bound = 0.4
(CR=485)

Fig. 10: Visualization of Baryon Density (Using SZ)
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(b) QMCPack-3 Spin0

Fig. 11: Valid Compression Ratio Range for FXRZ (using SZ)

shows that the error bound configuration (specifically, it is

from 1E-5 to 0.4 in our experiments) used in our evaluation

covers a very wide range according to Nyx user’s quality-of-

interest. That is, without loss of generality, our assessment is

conducted with comprehensive error bound settings. Fig 11

demonstrates the valid range of compression ratios (with

SZ) for two example datasets – Nyx(Baryon Density) and

QMCPack-3(spin0), respectively. As shown in Fig. 11 (a),

for example, we choose the compression ratios from 0 to

∼500 for Nyx(Baryon Density), because larger ratios would

cause significant data distortions, as shown in Fig. 10(c). The

valid range of compression ratios of other datasets are chosen

similarly based on reasonable data distortion.

D. Analysis of FXRZ Training Time
We provide the training time (using Bebop’s single node)

of FXRZ across different application dataset and compres-

sors in Table VI. For each application and compressor, total

training time includes obtaining stationary points (discussed

in Section IV-B), augmenting data by interpolation and RFR
training time. As shown in Table VI, FXRZ incurs very low

training time overhead, on average, 13.59 mins. Thanks to the

linear interpolation (discussed in Section IV-B) for making

total training time very low, as we do not need to run the

compressor too many times to obtain ample training data. Note

that, training times with MGARD+ is relatively higher because

time to obtain the stationary points with MGARD+ is higher

because MGARD+ usually has higher compression time than

other compressors. Note that, this training time is a one-time

cost as we do not need to run compressors at all during the

inference phase to apply FXRZ to estimate error bound setting

for a target compression ratio.

E. Validation of Optimization: Adjusting TCR
We now analyze the impact of our optimization (opt), ad-

justing target compression ratio, on the estimation accuracy by
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TABLE VI: Total Training Time (in Mins) by FXRZ

Comp.
Nyx-1 Nyx-1 Dark Nyx-1 Nyx-1 QMCPack-1 RTM- Hurricane Hurricane

Baryon Matter Temperature Velocity-X & 2 Small QCLOUD TC

SZ 14.92 16.45 14.17 15.10 13.83 5.43 2.79 3.14

ZFP 22.58 23.87 24.83 21.26 16.88 3.04 2.27 4.90

MGARD+ 31.48 26.93 32.38 28.31 23.39 10.44 4.75 5.53

FPZIP 11.30 14.86 10.08 10.73 10.57 3.98 2.43 2.34

comparing the average estimation errors between opt and with-

out opt for different datasets across different compressors in

Table VII. We pick one dataset from each of four applications

because of space limit. Other datasets show similar results. We

use Formula 5 and the same set of TCRs used in Section V-F

to measure average estimation errors. In Table VII across

different datasets and compressors, the average estimation

errors with opt can be as much as 15.23% and on average

4.13% lower than those without the opt. The key reason is

that after the TCR adjustment, ACR (Section IV-E2) reveals

the true data density in a dataset to project the compressibility

better. Consequently, these results across different datasets and

compressors show the effectiveness of our opt towards more

accuracy in FXRZ.

TABLE VII: Comparison of Average Estimation Error with

and without Adjusting Target Compression Ratio Optimization

Comp.
Nyx Baryon Density QMCPack BigScale Spin0 RTM BigScale Snap.-800 Hurricane TC Snap.-48

With Opt Without Opt With Opt Without Opt With Opt Without Opt With Opt Without Opt

SZ 7.63% 17.14% 1.52% 2.13% 13.88% 20.88% 4.50% 10.90%

ZFP 6.95% 22.18% 2.59% 5.53% 3.17% 8.37% 14.92% 8.63%

MGARD+ 22.76% 30.15% 1.16% 2.94% 13.81% 19.23% 6.51% 9.66%

FPZIP 5.36% 14.56% 5.83% 6.56% 6.89% 6.83% 8.10% 3.15%

F. Accuracy Evaluation

1) Evaluation Based on Capability Level 1 and 2: We

compare the accuracy of FXRZ with the baseline FRaZ in

Fig. 12 and 13 based on different application datasets. We

determine accuracy by how close the measured compression
ratio (MCR) (obtained from FXRZ estimated error bound

setting) to the target compression ratio (TCR) is.

Without loss of generality, on average, we set TCRs to

25 different values uniformly (to balance the experiment

time) which are all reasonable/applicable according to their

visualization and data distortion (Section V-C). The reason-

able settings have to be tuned slightly across compressors,

because some compressor such as ZFP cannot reach too high

compression ratio as SZ does. After that, we run FXRZ and

FRaZ to get the estimated error configurations, based on which

we run corresponding compressors to verify the accuracy of

compression ratios.

In Fig. 12, for the sake of space, we demonstrate the

accuracy result of one testing field or snapshot dataset per

application based on both SZ and ZFP. In the figure, we

use Ground Truth to denote the TCR. We show the results

of FRaZ based on 6 and 15 iterations along with results of

our framework FXRZ in the figure. As shown in the figure,

FRaZ struggles to maintain a good accuracy for both 6 and 15

iterations compared with FXRZ in most of the situations. We

observe that with higher iterations (15 iterations), FRaZ is able

to lower the estimation error (higher accuracy accordingly)

compared with the setting of 6 iterations. The key reason is

that FRaZ adopts a trial-and-error mechanism to search for the

expected error configuration, which relies on a large number

of iterations to converge. As such, when FRaZ is given more

iterations, its performance overhead would turn dramatically

high (to be shown in Table VIII) because of its inevitably

multiple expensive runs of the underlying compressors.

On the other hand, we observe that our FXRZ exhibits a

high accuracy in most of the cases, despite projecting slight

errors with the ZFP compressor to a certain extent. This is

not the issue of FXRZ but because of ZFP’s characteristic.

Specifically, ZFP’s compression ratio increases piecewisely
with the error bound (Section IV-B), so that in some cases

there is no exact MCR (compressor derived) in correspondence

to the TCR. That is, some TCRs cannot be realized by ZFP in

practice, so that no estimation method can match that targets in

principle. This is why the FXRZ with ZFP may have slightly

lower or higher MCRs compared with target compression ratio,

as shown in the figure.

Furthermore, in Fig. 13, we show estimation error (in

percentage) between TCR and MCR for each testing snapshot

or simulation configuration dataset generated from 4 real-

world scientific applications. MCR is obtained by running

the corresponding compressor based on the model estimated

error configuration for each testing dataset. For each testing

snapshot or simulation configuration dataset, we show the

result by averaging all the estimation errors in our experiments

with a corresponding compressor. The estimation error is

calculated based on Formula (5). Fig. 13 shows that FXRZ

have very low average estimation errors in most of the cases.

On average, FXRZ exhibits only 8.24% estimation error

across all the four compressors. On the other hand, FRaZ

with 15 iterations exhibits low estimation error than that of

FRaZ with 6 iterations, which is consistent with our previous

analysis. More specifically, their estimation errors across four

compressors are 34.48% and 19.37% on average, respectively.

EstimationError =
|TCR −MCR|

TCR
(5)

2) Evaluation Based on Different Application Scopes:
Here we show the robustness of our FXRZ by evaluating it

across different application scopes. We perform FXRZ training

with datasets from Nyx, QMCPack, Hurricane and RTM-

SmallScale. Then, we test the model with RTM-BigScale

dataset. Note that obtaining a high accuracy in such a case

is very challenging because the training datasets with various

application scopes may distract the model’s attention and the

datasets outputted by RTM-BigScale and RTM-SmallScale

have distinct precision. As shown in Fig 14, FXRZ still main-

tains low average estimation errors which are 11.49%, 6.76%,

13.66%, 19.81% while FRaZ shows 17.85%, 35.51%, 14.31%,

10.11% for SZ, ZFP, MGARD+ and FPZIP respectively. This

demonstrates that the features we exploit is fairly effective

in characterising data properties during inference phase even

when different application domains are present in training data.
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Fig. 12: Estimation Error Comparison between FXRZ and FRaZ (with 6 and 15 iterations)
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Fig. 13: Average Estimation Error across Different Target Compression Ratios for FXRZ and FRaZ (with 6 and 15 iterations).

Velo. stands for Velocity-X, S0 stands for Spin0, S1 stands for Spin1, QC stands for QCloud.

G. Performance Evaluation

In Table VIII, we demonstrate the efficiency of our model

FXRZ by comparing the average analysis time required by

FXRZ and FRaZ (with 15 iterations) with respect to the

compression time. We obtain the compression time by running

the corresponding compressor once for each of the testing

dataset. We show the results of FRaZ based on 15 iterations

because FRaZ has a much better accuracy (low estimation

error) with 15 iterations than that with 6 iterations. We refer to

analysis time as the time required for estimating the expected

error configuration based on TCR. In our experiment, for

any snapshot or simulation configuration dataset, we calculate

average analysis time by averaging all the analysis times

required for estimating error configurations based on each

of the uniformly selected 25∼30 different TCRs. Finally, we

acquire the average analysis time cost as the ratio of the

average analysis time to the compression time. For FXRZ,

analysis time mainly involves feature extraction, calculation of

percentage of non-constant blocks, and time taken by the RFR
model to predict the expected error configuration. For FRaZ,

analysis time is the search time for estimating the expected

error configuration iteratively based on a given TCR. As shown

in Table VIII, the analysis time cost by FRaZ is significantly
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Fig. 14: Estimation Error across Different Application Scopes

larger than FXRZ, as FRaZ requires expensive iterative search.

Quantitatively, on average, FRaZ can be 108× slower than

FXRZ to find the desired configuration.

TABLE VIII: Average Analysis Time Cost Relative to Com-
pression Time: FXRZ vs. FRaZ with 15 Iterations

App.
Test Fields/ SZ ZFP MGARD+ FPZIP

Snapshots FXRZ FRaZ FXRZ FRaZ FXRZ FRaZ FXRZ FRaZ

Nyx

Baryon Density 0.07x 5.04x 0.06x 6.27x 0.07x 13.86x 0.08x 17.31x

Dark Matter Density 0.07x 6.02x 0.08x 7.51x 0.09x 16.43x 0.06x 10.75x

Temperature 0.07x 6.03x 0.05x 6.46x 0.07x 17.29x 0.11x 25.36x

Velocity-X 0.08x 5.53x 0.06x 5.98x 0.09x 23.78x 0.11x 20.84x

QMCPack
BigScale Spin0 0.08x 7.72x 0.07x 7.69x 0.068x 11.42x 0.08x 22.01x

BigScale Spin1 0.08x 7.78x 0.07x 5.42x 0.07x 11.51x 0.08x 17.12x

RTM BigScale Snapshot-750 0.09x 8.10x 0.68x 32.72x 0.12x 21.29x 0.13x 16.85x

BigScale Snapshot-800 0.09x 7.23x 0.71x 29.41x 0.13x 19.44x 0.13x 15.79x

Hurricane
QCLOUD Snapshot-48 0.20x 9.14x 0.47x 15.57x 0.22x 14.09x 0.22x 14.78x

TC Snapshot-48 0.17x 5.93x 0.19x 14.84x 0.18x 21.20x 0.18x 25.72x

Average Across All Domains 0.10x 6.85x 0.24x 13.19x 0.11x 17.03x 0.12x 18.65x

H. Parallel Data Dumping Evaluation

We use Fig. 15 to demonstrate the significant performance

gains of our FXRZ compared with FRaZ, when writing the

compressed data to the parallel file system (PFS) on a super-

computer – Bebop with up to 4,096 cores. In the experiment,

we let each core process a fixed amount of Nyx simulation

data (i.e., 2GB), so the total data volume increases with the

number of cores. Our experiment follows weak scaling to

show the execution scalability: data volume increases as the

number of cores grows and the amount of data per core stays

the same. The model execution time stays constant because it

depends on the amount of data processed per core. The data

writing time increases because of the increasing total volume

of data with the number of cores. According to the figure,

larger execution scale causes longer wall-clock time (including

model execution time, compression time and data writing

time), because of more data to process at runtime. FXRZ

significantly outperforms FRaZ (with a performance gain of

1.18∼8.71×) because of its relatively very high performance

in the runtime estimation/analysis.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel efficient feature-driven

compressor-agnostic lossy compression framework (FXRZ)

to efficiently estimate appropriate error bound setting based

on a target compression ratio. We evaluate FXRZ using 4

lossy compressors with 10 real-world datasets from 4 different

applications across different domains. The key findings are: (1)
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Fig. 15: Parallel Performance Evaluation (Nyx Simulation)

FXRZ is fairly accurate in estimating the error bound setting

that would lead to a measured compression ratio which is

close to the target compression ratio. The estimation error

is only about 8.24%, on average. Even if training data is

from different application scopes, FXRZ can still keep a good

accuracy, (2) FXRZ always incurs considerably lower (one

or more orders of magnitude lower) execution overhead than

the baseline FRaZ does. For instance, on average, FXRZ’s

online analysis time takes only about 14% of the compression
time. Moreover, FXRZ is 108× faster than FRaZ, (3) FXRZ

significantly outperforms FRaZ with a performance gain of

1.18∼8.71× when performing a parallel data dumping on a

supercomputer (Bebop), because of its high performance in

the runtime analysis. In the future, we plan to further improve

the accuracy by exploring other optimization strategies.
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