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Abstract—Deep Neural Networks (DNNs) are widely deployed
in various applications such as autonomous vehicles, healthcare,
space applications. TensorFlow is the most popular framework
for developing DNN models. After the release of TensorFlow 2,
a software-level fault injector named TensorFI is developed for
TensorFlow 2 models, which is limited to inject faults only in
sequential models. However, most popular DNN models today are
non-sequential. In this paper, we are the first to propose TEN-
SORFI+, an extension to TensorFI to support for non-sequential
models so that developers can assess resiliency of any DNN model
developed with TensorFlow 2. For the evaluation, we conduct
a large-scale fault injection experiment on 30 sequential and
non-sequential models with three popularly used classification
datasets. We observe that our tool can inject faults in any layer for
any sequential or non-sequential DNN model, and fault-injected
inference incurs only 7.62× overhead compared to fault-free
inference.

Index Terms—Deep Neural Networks (DNNs), Transient Hard-
ware Faults, Non-sequential DNN Models, Reliability Assessment

I. INTRODUCTION

Over the last decade, Deep Learning Neural Networks

(DNNs) have been widely deployed in many areas such as

computer vision, natural language processing, and autonomous

vehicles (AVs) [1], [2]. With the ever-increasing demands of

DNNs, parallel processing units such as Graphics Processing

Units (GPUs) and Tensor Processing Units (TPUs) have been

developed to accelerate the DNN inference [3], [4]. Many

machine learning (ML)-based applications, such as AVs, health

care, and space applications, require high reliability, low

latency, and high throughput during the inference phase [2],

[5], [6]. Therefore, the ability of DNNs to deliver accurate

performance critically depends on their resiliency to faults [7],

[8].

One of major dependability threats today in computer

systems is transient hardware faults, which are commonly

caused by high energy particles striking electronic devices

and resulted in bit flip errors in logic values [9]. Such faults

may cause DNN failures, leading to misclassifications in DNN

inferences [10]. The straightforward way to assess the relia-

bility of a system is fault injection (FI). FI can be conducted

at the hardware or software level. Software-Implemented FI

(also known as SWiFI) has lower costs, is more controllable,

and easier for developers to deploy [11]. Therefore, SWiFI has

become the dominant method to assess a system’s resilience

on the presence of both hardware and software faults.
Due to the increase in popularity of ML-based applications,

there are many frameworks developed on top of them to ab-

stract the underlying complex structure and make it easy-to-use

for the developers. Such popular frameworks are TensorFlow

and Keras. To operate, Keras needs a backend, and TensorFlow

has become the default backend of Keras. Thus, most of the

developers and researchers use keras with tensorflow to design

their DNNs [12].
To assess the reliability, an open-source SWiFI framework

called TensorFI2 [13], built on top of TENSORFI [14], was

developed which is a configurable FI framework to inject

faults in models developed with Tensorflow 2 which inherently

supports Keras. But this framework is only limited to conduct

FIs on sequential DNN models, such as VGGs [15], meaning

any layer’s input depends only on the immediate preceding

layer’s output and vice versa. However, most popular deep

learning models such as DenseNet [16], ResNet [17] are non-

sequential, meaning any intermediate layer’s input can depend

on multiple preceding layers’ outputs and vice versa. Hence,

there is an increasing need to develop a fault injector to support

non-sequential models.
In this paper, we are the first to propose TENSORFI+, a

framework to fill-up this gap by extending TensorFI2 [13] to
support FIs in non-sequential DNN models to assess the reli-
ability. However, we face several challenges to support non-

sequential models: 1) Because of non-sequentiality, each DNN

layer’s input may depend on multiple preceding layers’ outputs

and vice versa. Moreover, structures of Tensorflow operators

are not allowed to modify because of negative side effects.

Hence, leveraging only high-level details such as API calls to

keep track of error propagation into multiple directions is a

very difficult task. 2) There are possibly multiple overlapping

paths, hence possible repetition in the computation for some

layers during fault propagation. Consequently, the performance

overhead would be high. With the above challenges in mind,

we make the following contributions in this paper.

• We develop a scalable FI framework, TENSORFI+, to

support FI into non-sequential DNN models developed

with Tensorflow 2.

• We propose an optimization strategy to reduce fault-

injected inference overhead by efficiently keeping track
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error propagation in non-sequential DNN models in

which an error can be propagated in multiple directions.

• We evaluate TENSORFI+ on 30 DNN models in Tensor-

Flow 2 with datasets used to assess reliability of safety-

critical context. We also evaluate the performance over-

head of our framework compared to fault-free inference.

II. BACKGROUND & USE CASE DISCUSSION

A. Deep Learning Neural Networks

A deep neural network (DNN) consists of multiple compu-

tation layers [18] where higher-level abstraction of the input

data or a feature map is extracted to preserve each layer’s

important information. In this work, we consider convolu-

tional neural networks of DNNs, as they are broadly used

in DNN applications. The number of convolutional layers in

such DNNs can range from a few to thousands of layers.

Each convolutional layer applies a kernel (or filter) on the

previous layer’s feature maps to extract underlying hidden

characteristics and generate the corresponding output feature

maps. Activation function (ACT) such as ReLU is generally

applied on some layers’ output results. In some DNNs, a small

number of fully-connected (FC), pooling (POOL) layers are

typically stacked on the convolutional layers for classification

purposes. Once the topology is constructed, DNN is fed with

input image data for training. After that, DNN will go through

a series of backpropagation to tune the weights associated

with feature maps. After training, DNN is ready for image

classification with testing image data, which we call as the

inference phase. The input of inference phase is a digitized

image, and the output is a predicted object such as car. We

call misclassification as a mismatch between predicted output

and true label.

B. Fault Model

In this work, we consider transient hardware faults that

randomly occur during the execution of the DNN inference.

Note that training phase can also be affected by these faults,

however, training is usually a one-time process, so we can

always verify the results of the trained model. In contrast,

any system expects DNN inference to be fast and accurate, as

inference is frequently applied in real time, possibily thousands

of time, so we can not verify the outcome after each inference.

Hence, DNN inference is essential to be resilient against such

faults [10], [19].

During each inference (program execution), we randomly

inject one fault directly at the output value of a randomly

selected layer of DNN models. This fault injection method

is aligned with prior studies [19], [20]. We refer to one fault

as single bit-flip in the output value of a randomly selected

layer. As multiple faults during one program execution are

relatively rare event, single bit-flip fault is found as accurate as

multiple bit-flips fault in recent studies [20], [21]. A fault can

be activated and may cause the DNN inference produce any

of four outcomes: SDC, Masked, Crash or Hang. We assume

that faults do not modify the state/structure of the model

(e.g., change the model’s parameters or operators), nor do we

consider faults in the model’s inputs, as they are extraneous

to TensorFI [14] and are outside of the scope of our paper.

C. Terms and Definitions

• Top-1 accuracy: Percentage of top-1 correctly classified

labels over total number of fault-free DNN inferences.

• Masked fault: Even though a fault occurs during infer-

ence, DNN output turns out to be same as the fault-free

output of the same inference. Here same inference implies

inference with same input image.

• Silent Data Corruption (SDC): A mismatch between

output of a fault injected DNN inference and fault-free

output of the same inference.

• SDC rate: Percentage of SDC cases over total number of

fault injected DNN inference trials.

D. A Real-World Use Case of DNN Failures by Soft Errors

The consequences of soft errors in DNN systems can be

catastrophic, especially in the safety-critical context, and often

error mitigation is required to meet specific reliability targets.

For example, due to soft errors, if an AV misclassifies a

transporting truck as completely different object such as a

small bird, the AV might take different action policy other than

braking. Thus, the AV may not be able to avoid a possible

collision. Moreover, most of the DNN models nowadays

deployed in AVs are non-sequential. Hence, there is a growing

need to systematically understand error propagation in non-

sequential models.

III. TENSORFI+ DESIGN

In this section, we first introduce the workflow of TEN-

SORFI [13], [14] that we extend. Then we discuss its limi-

tation in supporting non-sequential DNN models. Finally, we

propose our strategy to design TENSORFI+ for injecting faults

in non-sequential models.

A. TENSORFI Workflow and Limitation

TENSORFI [13], [14] is a FI framework for TensorFlow

applications and has been used to simulate transient hardware

faults during DNN inference in recent related studies [19],

[22]. It supports FI experiments on DNN models imple-

mented using the TensorFlow framework [23] which is the

most popular used ML framework nowadays [24]. TENSORFI

operates on TensorFlow dataflow graphs which contains two

main components: (1) operators of computational units (e.g.,

matrix multiplication), and (2) tensors of data units. One can

build ML models using the built-in operators or define their

customized operators. TENSORFI duplicates the TensorFlow

graph with customized operators, which are designed to be

able to not only perform computations as standard operators

do, but also inject faults at runtime during model inference.

Nowadays, it is common to use TensorFlow 2 and Keras

to deploy DNN models because of the abstraction and easy

use of the framework and availability of numerous available

pre-trained models in Keras. Recently, TENSORFI has been

upgraded [13] to work with TensorFlow 2 and Keras. As
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structures of operators are not allowed to change, it leverages

the Keras APIs to inject faults into the output value of layers.

Unfortunately, it only supports fault injections in sequential

DNN models. So, the gap to support widely used non-

sequential models such as ResNets [17], DenseNets [16] is

still open.

Fig. 1: Fault injection in a sequential model

Figure 1 shows how TENSORFI injects faults into a se-

quential model. In a sequential model, a layer’s input is

only sequentially dependent on its previous layer’s output.

For example, layer 4 is selected for fault injection, then

TENSORFI computes the output of layer 4 using output of

layer 3 as its input and injects a fault into the output of layer 4.

As the error propagates, TENSORFI sequentially keeps track

of the propagation by leveraging API calls to compute the

outputs from layer 5 to 8 using the faulty input of layer 5.

However, if a DNN is non-sequential, in which case a layer’s

input is dependent on multiple preceding layers’ outputs,

TENSORFI has no way to trace error propagation in its current

implementation.

B. Support for Non-sequential DNN Models

To overcome the above limitation, we propose TENSORFI+

to work with both sequential and non-sequential models. The

code is made publicly available1. As we see, sequential models

have only one input and one output for every intermediate

layer. However, a non-sequential model might have multiple

inputs and outputs for an intermediate layer. Moreover, chang-

ing the structures of Tensorflow operators in Keras has nega-

tive effect, so we cannot directly profile them for FIs. Instead,

we leverage high-level abstractions such as API calls to build a

dependency graph of layers to conduct FIs. This FI method is

aligned with TENSORFI [14]. Hence, when we inject a fault

to the output of a specific layer of a non-sequential model,

we need to propagate that erroneous output to the inputs

and outputs of other layers across multiple directions leading

up to the final output based on the developed dependency

graph in order to provide support for non-sequential models in

TENSORFI. We develop such graph by leveraging an internal

data structure in Keras which keeps layer mappings in a list.

Note that in Keras, it is impossible to find any direct indication

of dependency from the sequential pattern of layers. Since

each layer and output tensor in Keras has a unique identifier

in the data structure, we leverage this information to build

the dependency graph that can relate the input and output

dependency of each layer of the entire DNN model.

In our dependency graph, each node consists of the follow-

ing attributes.

1) Identifier: A unique identifier of the layer output

1https://github.com/sabuj7177/TensorFIPlus

Algorithm 1 FI Method by TENSORFI+

Input: Trained Keras model layers list (L) and an input image (I).
Output: Predicted output by faulty inference.

1: Build dependency graph G from L and get superlayers list S.
2: Call Keras API for output of a randomly selected layer l from G

and do fault injection in the output.
3: Get the immediate preceding superlayer ps and next superlayer

ns of l from G.
4: MDict = ∅, and add faulty output tuple (l, output[l]) into MDict.
5: Call Keras API to computes outputs of layers from input-layer

to ps and store them into MDict.
6: Recursively call Keras API to get the output of layer r that are

linked to input layers of ns.
7: Apply Optimization Strategy (Section III-C) using MDict.
8: Save computed output tuple (r, output[r]) of r to MDict.
9: Compute output layer value from ns sequentially by calling Keras

API.

2) Input layers: List of layer indices on which the layer

depends

3) Output layers: List of layer indices which depend on

the layer

Fig. 2: A Dependency graph with superlayers (marked as red)

Algorithm 1 provides the details of a random FI method

by TENSORFI+. We refer to Figure 2 to show an example of

a dependency graph (line 1) for non-sequential model. In the

example, there are a total of 13 layers. Layer 0 is the input

layer, and layer 12 is the output layer. Each node represents

a layer. Each arrow represents a layer’s dependency. As the

model is non-sequential, any layer might have multiple inputs

and outputs. There can be multiple branches in the dependency

graph such as layers 3 to 10. Recall that we are using Keras

API calls for fault propagation. If we inject fault to any layer

which are in the branch, we can not directly get output of the

last layer from that injected layer because any subsequent layer

might need inputs which are not computed yet. For example,

if we inject fault in layer 4, we can not sequentially keep

track of outputs from layer 4 to layer 12 because layer 9

and 10 also require values from layer 6 and 8 respectively

which are not computed yet. The solution is to identify layers

which are not part of any branch, so we can directly compute

output of any subsequent layer from those layers. We call them

superlayers (marked as red in the figure) in the dependency

graph. Specifically, any subsequent layer after a superlayer is

not dependent on the layers prior to that superlayer. Hence, the

layers between 3 and 9 are not superlayers. We call them non-
superlayers (marked as grey in the figure). However, layers 0,

1, 2, 10, 11, 12 are superlayers, and we can calculate output

value of any subsequent layer from these nodes. If a fault

is injected in the output of a non-superlayer, we first find
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its previous and next immediate superlayer (line 3). We then

recursively (line 6) compute the inputs (by the API calls)

of that next superlayer by tracing the corrupted value and

compute its output. As the dependency graph and superlayers

are model-specific, profiling of the model is required before

FIs.

We use Figure 2 as a running example to show how a fault

can be injected in a non-sequential model. Note that the FI

procedure by TensorFI2 is to trace input dependency from

immediate neighbours and propagate the value in subsequent

layers till the output layer. For example, if we inject a fault at

layer 6, then TensorFI2 will: (1) compute layer output from

layer 0 to layer 6, (2) inject fault at the output of layer 6, and

(3) use the output as the input of layer 9 and propagate the

computation from layer 9 to layer 12. However, this approach

fails because layer 9 requires output from both layer 4 and

layer 6. Although we have the output of layer 6, we also need

to compute the fault-free output of layer 4. Similar reason

also holds for layer 10. Hence, we propose to first compute

the next immediate superlayer of the fault injected layer. In the

example, the immediate next superlayer of layer 6 (selected

for FI) is layer 10. We then recursively compute the inputs of

the superlayer. In other words, we compute outputs of both

layer 8 and layer 9. Then, we need to follow the recursive

approach because the inputs of the superlayer (e.g., layer 9)

might be from multiple layers, and we also need to compute

the outputs of all those layers. If we need to compute the inputs

of any layer which are not affected by faults (e.g., layer 8),

we compute them by using the original inputs of the model.

C. Performance Optimization Strategy

To improve the computing overhead of TENSORFI+during

FIs in non-sequential models, we consider two optimization

strategies. First, we memorize our computation results. That is,

if a layer output is computed earlier, we use the pre-computed

value instead of recomputing the layer to make the process

more efficient. In Figure 2, layer 8 and layer 9 both depend

on the output of layer 3. To save time, we can compute the

output of layer 3 once(e.g., to compute output of layer 8) and

then use this output if required(e.g., to compute output of layer

9 later).

Second, we consider the longest possible sequence of layers

when we recursively compute the the inputs of superlayers.

For example, if we inject faults in layer 2, its immediate next

superlayer is layer 10, which requires outputs of layer 8 and 9.

To get outputs of layer 8 and 9, we need all of the following

computations.

• Compute output of layer 3 and 5 using layer 2

• Compute output of layer 4 and 7 using layer 3

• Compute output of layer 6 using layer 5

• Compute output of layer 9 using layer 4 and 6

• Compute output of layer 8 using layer 7

Here, we need to compute for a total of seven layers’ out-

puts. However, if we detect the longest sequential sequences

of layers that can be computed only one time, the computation

overhead reduces significantly. That is, if we detect the longest

sequences such as layer 2-3-7-8, 2-3-4, 2-5-6 and (4,6)-9, we

only need to compute four layers’ outputs (e.g., layer 8, 4, 6,

9), making our framework efficient for FIs in non-sequential

models. As real-world DNN models are non-sequential, more

complex, and present opportunities to prune above cases more,

these strategies provide significant performance improvement

compared to naive recursive approach.

IV. EXPERIMENTAL SETUP

In this section, we evaluate our TENSORFI+ on different

DNN models. All of our experiments and evaluations are

conducted on a Intel 28-core machine with 32GB memory

running Debian Linux.

A. Datasets and DNN Models

We use ImageNet [25], CIFAR-100 [26] and German Traffic

Sign Recognition Benchmark(GTSRB) [27] datasets for our

experiment. The former two datasets are popularly used for

standard classification tasks and the later one contains real-

world traffic sign datasets and specifically used in object

detection for AVs. We use GTSRB dataset to show that

TENSORFI+ can also work with safety-critical datasets and

models. We have 13 DNN models for CIFAR-100, 12 DNN

models for ImageNet and 5 DNN models for GTSRB. Among

them, 8 are sequential and 22 are non-sequential models.

For ImageNet, we adopt pre-trained models such as VGG,

DenseNets, ResNets, MobileNets, Inception, which are avail-

able on Keras2 . For CIFAR-100 and GTSRB, since the pre-

trained models are not directly available, we train the DNN

models using pytorch. Then we convert the pre-trained models

from pytorch to TensorFlow 2 using pytorch2keras3 module.

B. Fault-free and Fault-injected Inference Methods

Fault model is described in Section II-B. In our FI ex-

periments, we randomly sample 10,000 images from each

ImageNet and GTSRB dataset test sets. As CIFAR-100 has

10000 images in the test set, we use the full test set.

First, we run inference on the sampled 10000 datasets to get

the accuracy and fault-free predicted labels for each model.

Then, for each model, we inject 3000 random faults to get its

SDC rate. 3000 random FIs are found adequate in studying

error resilience in previous studies [28], [29].

C. Research Questions

We try to find answers for two research questions (RQ):

• RQ1: What are the SDC rates of both sequential and non-

sequential models with different types of datasets?

• RQ2: What is the performance overhead by TENSORFI+?

V. RESULTS

We organize our evaluation results by research questions.

2https://keras.io/api/applications/
3https://github.com/gmalivenko/pytorch2keras

249

Authorized licensed use limited to: The University of Iowa. Downloaded on January 27,2023 at 16:30:28 UTC from IEEE Xplore.  Restrictions apply. 



Dataset Model Top-1
accuracy

SDC
rate

ImageNet

VGG16 (S) 71.18% 3.53%
VGG19 (S) 71.35% 3.60%

ResNet50 (NS) 74.76% 1.43%
ResNet101 (NS) 76.14% 1.57%
ResNet152 (NS) 76.38% 2.07%
MobileNet (NS) 70.25% 0.93%

MobileNetV2 (NS) 71.07% 0.53%
DenseNet121 (NS) 75.04% 1.20%
DenseNet169 (NS) 75.76% 1.10%

Xception (NS) 78.92% 1.70%
InceptionV3 (NS) 77.77% 1.73%

InceptionResNetV2(NS) 80.11% 1.20%

CIFAR-100

VGG11 (S) 69.12% 1.40%
VGG13 (S) 71.51% 1.73%
VGG16 (S) 72.33% 1.03%
VGG19 (S) 71.53% 1.23%

ResNet18 (NS) 76.35% 1.37%
ResNet34 (NS) 77.68% 0.90%
ResNet50 (NS) 78.52% 1.27%

ResNet101 (NS) 78.93% 1.03%
ResNet152 (NS) 79.68% 1.40%
GoogleNet (NS) 76.70% 1.57%

InceptionV3 (NS) 79.45% 1.50%
InceptionV4 (NS) 77.80% 1.50%

Xception (NS) 77.96% 2.00%

GTSRB

VGG16 (S) 97.57% 0.80%
VGG19 (S) 98.25% 0.90%

ResNet34 (NS) 98.98% 1.13%
ResNet50 (NS) 97.91% 0.97%

ResNet101 (NS) 98.55% 0.67%

TABLE I: Top-1 accuracies and SDC rates for both sequential

and non-sequential models across all the datasets. Here S and

NS refer to Sequential and Non-sequential respectively.

A. RQ1: What are the SDC rates of both sequential and
non-sequential models with different types of datasets?

TENSORFI+ can inject faults in both sequential and non-

sequential models. Hence, in this RQ, we aim to measure the

SDC rates of both sequential and non-sequential models by

TENSORFI+. In Table I, we show the Top-1 accuracies and

SDC rates of different sequential and non-sequential models

with three different datasets.

Different VGG models are the common example of sequen-

tial models. We can see that TENSORFI+ can inject faults

in VGG models with ImageNet, CIFAR-100 and GTSRB

datasets, and demonstrates an average 3.57% and 1.35% and

0.85% SDC rate. respectively. To test the FI capability of

TENSORFI+ with the non-sequential model, we experiment

with models such as ResNet, MobileNet, DenseNet, Xception,

Inception, InceptionResNetV2, GoogleNet, and their variants.

These are the most used non-sequential models nowadays. We

can see that our framework can successfully inject faults in

all of these models, and accordingly demonstrate SDC rates

from 0.53% to 2.07% across those models. Moreover, we

show that TENSORFI+can work with safety-critical datasets,

such as GTSRB, by adding support for non-sequential models.

Therefore, TENSORFI+ can inject fault in any DNN model

(irrespective of sequentiality) developed with TensorFlow 2.

Dataset Model Fault-
Free

Infer-
ence

Time(s)

Fault-
Injected
Infer-
ence

Time(s)

Overhead

ImageNet

VGG16 (S) 0.026 0.047 1.81x
VGG19 (S) 0.030 0.043 1.43x

ResNet50 (NS) 0.027 0.145 5.37x
ResNet152 (NS) 0.065 1.098 16.89x
MobileNet (NS) 0.009 0.099 11.00x

DenseNet121(NS) 0.027 0.460 17.04x
Xception (NS) 0.019 0.159 8.37x

CIFAR-100

VGG16 (S) 0.009 0.039 4.33x
VGG19 (S) 0.009 0.025 2.78x

ResNet50 (NS) 0.011 0.101 9.18x
GoogleNet (NS) 0.012 0.223 18.58x

InceptionV3 (NS) 0.022 0.081 3.68x
Xception (NS) 0.014 0.144 10.29x

GTSRB

VGG16 (S) 0.029 0.071 2.45x
VGG19 (S) 0.025 0.065 2.60x

ResNet50 (NS) 0.016 0.153 9.56x
ResNet101 (NS) 0.030 0.123 4.10x

TABLE II: FI Overheads of DNN models compared to the

fault-free inference

B. RQ2: Performance overhead by TENSORFI+?
In this RQ, we analyze how much computation overhead

during inference incurs by TENSORFI+ while conducting FIs.

In Table II, we show the time required for fault-free inference

and fault-injected inference, and provide the overhead (last

column) comparison with respect to fault-free inference. To

compute the fault-free inference time of a model, we average

the times of ten subsequent inferences with the model. We

follow a similar approach to measure the average time for

fault-injected inference. Note that the FI is random for each

of ten subsequent inferences. We can see that, on average,

fault-injected inference time is only 7.62× higher than fault-

free inference time across all the models. Recall that during a

random FI per inference (program execution), we need to ran-

domly choose a layer, compute the output of that layer using

layer inputs, inject a fault to the output, propagate the faulty

output to subsequent layers leading up to the final layer, and

finally compute the model’s prediction. We can also see that

sequential models such as VGGs have comparatively much

lower overhead than non-sequential ones. Recall that for non-

sequential models, any layer after the fault-injected layer can

have input dependency on layers before the fault injected layer.

So, we need to do some extra work, which would significantly

increase the computation overhead compared to sequential

models. However, thanks to the improvement mentioned in

Section III-C, the overhead is still reasonable.

VI. RELATED WORK

With the increasing number of studies related to DNN

resilience and accuracy, different fault injectors have been pro-

posed to inject faults in models developed in frameworks such

as TensorFlow, PyTorch. To inject faults in TensorFlow-based

applications, Li et al. [14] presented a configurable and high-

level fault injector tool named TENSORFI. Although this tool
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can inject faults at both hardware and software levels, it can

only work with TensorFlow 1. Mahmoud et al. [30] proposed

PyTorchFI, a runtime perturbation tool for injecting faults in

DNN models developed in PyTorch. Although TensorFlow 2

has become very popular for DNN model design due to its

support of Keras and abstractness in model building, none of

the aforementioned fault injection tools can work with this

framework. Recently, a fault injector tool named TensorFI2

[13] has been developed, which only supports FIs in linear

models with TensorFlow 2. However, our work is a complete

and configurable FI framework that can work with all types

of linear and non-linear DNN models designed and developed

with TensorFlow 2.

VII. CONCLUSION

In this work, we propose TENSORFI+ to support non-

sequential DNN models developed with TensorFlow 2. As

most developers and researchers today use TensorFlow 2 for

designing and developing their DNN models, our framework

can help them systematically assess resiliency of DNN models

developed with TensorFlow 2. We evaluate TENSORFI+ with

30 popularly used DNN models with three datasets. Our

evaluation shows that TENSORFI+ can work with all types of

DNN models (sequential and non-sequential) developed with

TensorFlow 2, and its FI overhead during inference is, on

average, 2.57× and 10.37× for sequential and non-sequential

models respectively compared to fault-free inference.
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