
Characterizing Deep Learning Neural Network
Failures between Algorithmic Inaccuracy and

Transient Hardware Faults

Sabuj Laskar
University of Iowa

IA, USA

sabuj-laskar@uiowa.edu

Md Hasanur Rahman
University of Iowa

IA, USA

mdhasanur-rahman@uiowa.edu

Bohan Zhang
University of Iowa

IA, USA

bohan-zhang@uiowa.edu

Guanpeng Li
University of Iowa

IA, USA

guanpeng-li@uiowa.edu

Abstract—Deep Neural Networks (DNNs) have been widely de-
ployed in safety-critical applications such as autonomous vehicles,
healthcare, and space applications. Though DNN models have
long suffered intrinsic algorithmic inaccuracies, the increasing
number of hardware transient faults in computer systems has
been raising safety and reliability concerns in safety-critical
applications. This paper investigates the impact of DNN misclas-
sifications that caused by hardware transient faults and intrinsic
algorithmic inaccuracy in safety-critical applications. We first ex-
tend a state-of-the-art fault injector for TensorFlow application,
TENSORFI, to support fault injections on modern DNN models
in a scalable way, then characterize the outcome classes of the
models, analyzing them based on safety related metrics. Finally,
we conduct a large-scale fault injection experiment to measure
the failures according to the metrics and study their impact on
safety. We observe that failures caused by hardware transient
faults could have much more significant impact (up to 4 times
higher probability) on safety-critical applications than that of the
DNN algorithmic inaccuracies, advocating the potential needs to
protect DNNs from hardware faults in safety-critical applications.

Index Terms—Deep Neural Networks, Transient Hardware
Faults

I. INTRODUCTION

Over the last decade, Deep Learning Neural Networks

(DNNs) have been widely deployed in many areas such as

computer vision, natural language processing, and autonomous

vehicles (AVs) [1]–[4]. With the ever-increasing usages and

demands of DNNs, parallel processing units such as Graph-

ics Processing Units (GPUs) and Tensor Processing Units

(TPUs) are being developed to accelerate the DNN inference

processes [5]–[7]. Many machine-learning-based applications,

such as AVs, health care, and space applications require

high reliability, low latency, and high throughput during the

inference steps [8]–[12]. Therefore, the ability of DNNs to

deliver effective performance critically depends on their de-

pendability [13], [14].

One of major dependability threats in computer systems is

transient hardware faults or soft errors, which are commonly

caused by high energy particles striking electronic devices

and resulted in bit flip errors in logic values [15], [16]. On

one hand, such faults may cause DNN failures, leading to

misclassifications in DNN inferences [17]–[19]. On the other

hand, DNNs are by no means perfect – they do not provide

100% accuracy (say in classification models) in the inference

phase even without any transient hardware faults. DNNs

often demonstrate some percentage of misclassifications when

inferred on previous unseen data samples. As a result, such

intrinsic algorithmic inaccuracies of DNN models also lead

applications that use the DNNs produce wrong outputs or

decisions. Since DNNs often suffer misclassifications due to

intrinsic inaccuries during inference phase, researchers have

wondered whether there is a strong need to protect DNNs

from transient hardware faults which are much less frequent.
This paper takes the first step to answer the above question

by characterizing DNN misclassifications caused by DNN

intrinsic algorithmic inaccuracy as well as transient hardware

faults, in the context of safety-critical applications such as

AVs. Our contributions are threefold: (1) We first propose

TENSORFI+ – an extension of TENSORFI [20] which is an

open-source fault injection framework for DNNs – to support

complex DNN models developed with TensorFlow 2 [21].

Our extension also enables us to conduct fault injections

in a scalable manner, and so it is possible to study the

impact of soft error on the accuracy of large DNN models.

(2) We propose an evaluation method that measures DNN

dependability with safety-related metrics, rather than simply

counting misclassifications or silent data corruptions (SDCs)

due to soft errors. This approach allows us to conduct fine-

grained analysis of the impact of different DNN failures

on safety-critical applications. (3) Based on the method, we

evaluate a set of 30 popular DNN models that are used in

recent studies and popular applications with respect to DNN

intrinsic algorithmic inaccuracy and transient hardware faults,

respectively. To the best of our knowledge, this is the first
study that focuses on the comparison of DNN failures between
transient hardware faults and model intrinsic inaccuracies
based on safety-related metrics.

Our main results are as follows:

• We observe that, due to intrinsic algorithmic inaccuracy,

DNNs demonstrate up to 95% of total misclassifications

are non-safety-critical in real-world dataests such as Ima-

geNet and CIFAR-100. Only a small percentage (around

54

2022 IEEE 27th Pacific Rim International Symposium on Dependable Computing (PRDC)

2473-3105/22/$31.00 ©2022 IEEE
DOI 10.1109/PRDC55274.2022.00020

20
22

 IE
EE

 2
7t

h
Pa

ci
fic

 R
im

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
De

pe
nd

ab
le

 C
om

pu
tin

g
(P

RD
C)

 |
 9

78
-1

-6
65

4-
85

55
-5

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

PR
DC

55
27

4.
20

22
.0

00
20

Authorized licensed use limited to: The University of Iowa. Downloaded on February 20,2023 at 01:17:27 UTC from IEEE Xplore. Restrictions apply.

5%) of total misclassifcations are safety-critical.

• However, when we inject transient hardware faults to

DNNs, the safety-critical misclassifcation probability is

increased to up to 40%, which is significantly higher than

that caused by intrinsic algorithmic inaccuracy.

• Based on our evaluation results, due to transient hardware

faults on DNNs, we often observe misclassification cases

where a DNN misclassifies a safety critical object to a

non-safety critical object such as a man to a mushroom,

or a baby to a snail. Our results suggest that future DNN

systems likely require protections from transient hardware

faults even though their intrinsic accuracy is not 100%.

II. BACKGROUND KNOWLEDGE

A. Deep Learning Neural Networks

A deep neural network (DNN) consists of multiple compu-

tation layers [22] where higher-level abstraction of the input

data or a feature map is extracted to preserve each layer’s

unique and important information. In this work, we consider

convolutional neural networks of DNNs, as they are used in

a broad range of DNN applications. The number of convolu-

tional layers in such DNNs can range from three to a few tens

of layers [1], [2]. Each convolutional layer applies a kernel (or

filter) on the input feature maps to extract underlying visual

characteristics and generate the corresponding output feature

maps. Every computation result is saved in activations (ACTs)

after being processed by an activation function (e.g., ReLU),

connected based on the network topology. In some DNNs, a

small number (usually less than 3) of fully-connected layers

(FC) are typically stacked behind the convolutional layers for

classification purposes. Between the convolutional and fully-

connected layers, additional layers can be added, such as the

pooling (POOL) and normalization (NORM) layers. Once a

DNN topology is constructed, the network can be fed with

training input data, and the associated weights, abstracted

as connections between ACTs, will be learned through a

backpropagation process. After training, the DNN is ready

for image classification with testing data. This is referred to

as the inferencing phase of the network and is carried out

several times. The input of the inferencing phase is often

a digitized image, and the output is a list of candidates of

possible matches such as car, pedestrian, animal, each with a

confidence score. Generally, the trained models are deployed

to different systems like autonomous vehicles and used for

continuous inference tasks.

B. Transient Hardware Faults

Transient hardware faults, commonly known as soft errors,

are becoming prevalent in computer systems as the size of

transistors keep shrinking [15], [23], [24]. Soft errors occur

at circuit level, and then the fault propagates through each

system layer. Finally, the fault reach application level and

is propagated through program variables. Corrupted program

variables may finally affect the program output and change

it, leading to silent data corruption (SDC). The consequences

of soft errors in DNN systems can be catastrophic as many

of the systems are safety-critical, and error mitigation is

required to meet specific reliability targets. For example, if

the system detects a transporting truck correctly in AVs, it

might apply the brakes in time to avoid a collision. However,

if the truck is misclassified as different object like a bird

because of soft error, the braking action may not be executed

in time, especially when the car is operating at high speed.

In this paper, we use soft errors and transient hardware faults

interchangeably.

C. DNN Intrinsic Algorithmic Inaccuracy

There are different root-causes for a DNN to misclassify

objects. One reason is due to DNN intrinsic algorithmic inac-

curacy. The inaccuracy is often reflected in the top-1 accuracy

of a DNN model, and the vast majority of the studies in

machine learning area aim to improve the top-1 accuracy and

so minimize the intrinsic algorithmic inaccuracy. The reasons

why there is intrinsic inaccuracy of DNN models are many-

fold: (i) poor image quality of the target object or in the train-

ing dataset, (ii) incapable underlying algorithm/architecture

of the DNN model, (iii) inefficient training method, just to

name a few. Note that every DNN suffers intrinsic algorithmic

inaccuracy regardless of whether there are hardware faults or

not, and hence there are no DNNs that can achieve 100%

accuracy in real-world object classification datasets such as

ImageNet.

D. Fault Model

In this work, we consider transient hardware faults that

randomly occur during the execution of the DNN inference

phase. The training phase can also be affected by the faults,

however, training is usually a one-time process, so we can

verify the results of the trained model. DNN inference, on the

other hand, is applied frequently at runtime and is hence likely

to be affected by such faults [17], [18], [25], [26].

We inject faults directly to the output values of layers of

DNN models. This fault injection method is aligned with prior

studies [25], [27], [28]. We follow the one-fault-per-execution

method as soft errors are relatively rare events with respect to

the typical time of a program’s execution, which is a common

assumption in the literature [28]–[31]. We inject fault to only

one layer of the model as faults in multiple layers are relatively

rare events. Soft errors can occur in the software layer as

single or multiple bit-flips. However, recent studies [27], [32]

have shown that multiple bit-flip errors demonstrate similar

error propagation patterns and Silent Data Corruption (SDC)

probabilities as single bit-flip errors (at the program level) do,

showing that studying single bit-flip fault injection is sufficient

for drawing conclusions about the error resilience of DNN

models.

We assume that faults do not modify the state/structure of

the model (e.g., change the model’s parameters [33], [34]),

nor do we consider faults in the model’s inputs, as they are

extraneous to TensorFlow [35] and are outside of the scope of

our paper.

55

Authorized licensed use limited to: The University of Iowa. Downloaded on February 20,2023 at 01:17:27 UTC from IEEE Xplore. Restrictions apply.

III. MOTIVATION AND HYPOTHESIS

Today, DNNs are being applied in various domains such

as AVs, healthcare, space applications, etc. Many of them are

safety-critical [36]–[38]. Misclassification during inference is

common in DNNs and every DNN suffers intrinsic algorithmic

inaccuracy. For example, the accuracy of popular pre-trained

DNN models on ImageNet commonly varies from 71.3% to

85.7% [39]. On the other hand, transient hardware faults are

becoming more and more prevalent in computer systems [13],

[14], [40], which may also lead to DNN misclassifications.

Various protection techniques [25], [41], [42] have been pro-

posed to protect DNNs from hardware faults. These proposed

techniques incur non-negligible performance overheads at run-

time (up to 48%) even at fault-free executions [43].

In the past, most works in the area evaluate DNN resiliency

based on the metrics such as SDC (e.g., misclassifications

in DNN output). While SDC is a widely accepted metric to

gauge system resiliency, in safety critical systems, SDCs in

DNNs may not always lead to safety violations or critical

failures. In this paper, we investigate the problem based on

the impact of DNN failures caused by hardware faults and

intrinsic inaccuracy respectively using our proposed safety-

related metric.

(a) A bus is misclassified by an
AV as a cab, but it will unlikely
raise safety concerns because for
both cases brake will be applied
in the AV

(b) A bus is misclassified by an
AV as an albatross, it will likely
raise a serious safety concern be-
cause brakes may not be applied
by the AV

Fig. 1: Impact of safety-critical misclassification in AVs

Not all misclassifications are equal. Although misclassi-

fication is a common phenomenon (due to either intrinsic

algorithmic inaccuracy or transient hardware faults) during

DNN inferences, misclassifications may not have a similar

impact on system’s behaviours. For example, in Figure 1,

if an AV detects a bus as a cab, it will take the necessary

steps such as applying brakes which are commonly required

for other four-wheelers. However, if it predicts the bus as an

albatross, the AV may consider a different driving decision

instead of applying brake. So, its action might not be decisive

for a four-wheeler in the latter case, which may consequently

leads to serious accidents. Prior works in the field mainly focus

on SDCs, which do not distinguish the failures according to

safety concerns. Instead, they only look at whether a fault

leads to misclassification or not. Neither do they compare the

failures with those caused by DNN intrinsic inaccuracy.

Our hypothesis: Our intuition is that DNN misclassifications

due to intrinsic algorithmic inaccuracy may not change the

original prediction to a great extent from the perspective

of safety concerns. For example, DNNs may misclassify a

cat as a dog or a television as a computer screen. Since

the misclassifications tend to stay within similar categories,

the failures may not be safety critical. However, a transient

hardware fault may misclassify the prediction to a great

extent during the DNNs inference since the fault with bit-

flip may lead to a drastic change in the numerical value of

computations. Consequently, the fault may cause the inference

to predict an output object significantly different from the true

output class. In light of this, we hypothesize that the safety
impact of intrinsic algorithmic inaccuracies is much lower
than that of transient hardware faults in a DNN, and hence
DNNs most likely require protection from hardware faults if
deployed in safety-critical applications.

IV. TENSORFI FAULT INJECTION FRAMEWORK

In this section, we first introduce the workflow of TEN-

SORFI [44] that we extend for fault injections. Then we dis-

cuss its limitation in supporting non-sequential DNN models.

Finally, we propose our method to design TENSORFI+ for

injecting transient hardware faults into non-sequential models.

A. Workflow and Limitation

In order to validate our hypothesis, we use TENSORFI

to conduct fault injection experiments. TENSORFI [44] is a

fault injection framework for TensorFlow applications and

has been used to simulate hardware faults in DNN model

inferences in recent related studies [25], [35]. We choose

it because it supports fault injection experiments on DNN

models implemented using the TensorFlow framework [21]

which is the most popular machine learning framework in

use today [45]. TENSORFI operates on TensorFlow dataflow

graphs which contains two main components: (1) operators

of computational units (e.g., matrix multiplication etc), and

(2) tensors of data units. One can build machine learning

models using the built-in operators or define their customized

operators. TENSORFI duplicates the TensorFlow graph with

customized operators, which are designed to not only be able

to perform computations as standard operators do, but also

inject faults at runtime of model inferences.

As TENSORFI injects faults on different operators, to sup-

port all types of DNN models, we need to implement a

large number of operators when deploying TENSORFI in the

models. Nowadays, it is popular to use TensorFlow 2 and

Keras to deploy DNN models because of the easy use of

56

Authorized licensed use limited to: The University of Iowa. Downloaded on February 20,2023 at 01:17:27 UTC from IEEE Xplore. Restrictions apply.

the framework and numerous available pre-trained models in

Keras. Recently, TENSORFI has been upgraded to work with

TensorFlow 2 and Keras. It uses the Keras model APIs to

inject static faults in the output states of layers, which only

supports fault injections in sequential models. The limitation

of TENSORFI still remains in the support of non-sequential

models such as ResNets, DenseNets, InceptionNet, GoogleNet

which are widely used in numerous applications nowadays.

Fig. 2: Fault injection in a sequential model

Figure 2 shows how TENSORFI injects faults into a se-

quential model. In a sequential model, a layer’s input is

sequentially dependent on its previous layer’s output. In the

example, say layer 4 is the selected layer for fault injection,

then TENSORFI computes the output of layer 4 from layer 1

using the inputs of layer 1 and injects the fault into the output

of layer 4. As the fault propagates, TENSORFI computes

the output by computing the outputs of layer 8 from layer

5 using the corrupted input of layer 5 which receives input

from layer 4. However, if a DNN is non-sequential, in which

case a layer’s input is connected to multiple-layers’ outputs,

TENSORFI has no way to trace error propagation in its current

implementation.

B. Support for Non-sequential DNN Models
We propose TENSORFI+ to work with both sequential and

non-sequential DNN models. As we can see, sequential models

have only one input and one output for every intermediate

layer. However, a non-sequential model might have multi-

ple inputs and outputs for an intermediate layer. Moreover,

changing the structures of Tensorflow operators in Keras has

negative effect [44], so we cannot directly profile them for

FIs. Instead, we leverage high-level abstractions such as API

calls to build a dependency graph of layers to conduct FIs.

This FI method is aligned with TENSORFI [44]. Hence, when

we inject faults to a specific layer of a non-sequential model,

we need to propagate the erroneous output of the injected

layer to the subsequent layers across different directions to

the final output. Thereby we need to keep track of the inputs

and outputs of each layer and formulate a dependency graph

based on the DNN structure in order to provide support for

non-sequential models in TENSORFI+. We do so by leveraging

an internal data structure in Keras which keeps sequential layer

mappings in a list. Note that in Keras, it is impossible to find

any direct indication of dependency from the sequential pattern

of layers. Since each layer and output tensor in Keras has

a unique output identifier in the data structure, we use this

information to build our dependency graph that can relate the

input and output dependency for every layer in the entire DNN

model.
In our dependency graph, each node consists of the follow-

ing attributes.

1) Identifier: A unique identifier of the layer output

2) Input layers: List of layer indices on which the layer

depends

3) Output layers: List of layer indices which depend on

the layer

Fig. 3: Example dependency graph with supernodes (marked

as red)

Figure 3 shows an example of a dependency graph for a non-

sequential model. In the example, there are a total of 13 layers.

Layer 0 is the input layer, and layer 12 is the output layer. Each

node is a representative of a layer in the dependency graph.

Each arrow represents a layer dependency in the graph. As

the model is non-sequential, any layer might have multiple

inputs and outputs. So there can be multiple branches in the

dependency graph like layers 3 to 10. Recall that we are using

Keras API calls for fault propagation. If we inject faults to

any layer which are in the branch, we can not directly get

output of the last layer from that injected layer because any

subsequent layer might need inputs which are not computed

yet. For example, we can not get output of layer 12 from

layer 4 because layer 8 and 10 required value of layer 6 and

8 respectively which are not computed yet.

The solution is to identify layers which are not part of any

branch, so we can directly compute output of any subsequent

layer from those layers. We call them supernodes (marked

as red in the Figure) in the dependency graph. Specifically,

any subsequent layer after a supernode is not dependent on

the layers prior to that supernode. Hence, the layers between

3 and 9 are not supernodes. We call them non- supernodes

(marked as grey in the figure). However, layers 0, 1, 2, 10,

11, 12 are supernodes, and we can calculate output value of

any subsequent node from these nodes.

In this way, if one can compute the inputs of a supernode,

we can use them to calculate the output of final output layer.

If a fault is injected in a non-supernode (marked as grey

in the Figure), we first find its next immediate supernode.

We then recursively compute the inputs (by the API calls)

of the supernode by tracing the corrupted output value and

compute the output. As the dependency graph and supernodes

are model-specific, profiling of the model is required before

fault injections.

We use Figure 3 as a running example to show how a

fault can be injected in a non-sequential model. The current

fault injection procedure in sequential models is to trace input

dependency from immediate neighbours and propagate the

value in subsequent layers till the output layer. Say we inject

a fault at layer 6, then the current procedure is: (1) compute

57

Authorized licensed use limited to: The University of Iowa. Downloaded on February 20,2023 at 01:17:27 UTC from IEEE Xplore. Restrictions apply.

layer output from layer 0 to layer 6, (2) inject fault at the

output of layer 6, and (3) use the output as the input of layer

9 and propagate the computation from layer 9 to layer 12.

However, this approach fails because layer 9 requires output

from both layer 4 and layer 6. Although we have the output

of layer 6, we also need to compute the fault-free output of

layer 4. Additionally, we cannot use the output of layer 9

only to compute the final output of layer 12 because layer 10

also requires the output of layer 8 which we need to compute

as well. In contrast, we propose to first compute the next

immediate supernode of the layer where we want to inject

the fault. In the example, the immediate next supernode of

layer 6 is layer 10. We then recursively compute the inputs

of the supernode. In other words, we compute outputs of both

layer 8 and layer 9. This is because the inputs of the supernode

(e.g., layer 9) might be from multiple layers and we need to

compute the outputs of all those layers also. If we need to

compute the inputs of any layers which are not affected by

faults(e.g., layer 8), we compute them by using the original

inputs of the model.

C. Efficiency Improvement

To improve the efficiency of TENSORFI+ when injecting

faults in non-sequential models, we take two major design

improvements. First, we memorize our computation results.

That is, if a layer output is computed earlier, we use the

pre-computed value instead of recomputing the layer to make

the process faster and more efficient. In Figure 3, layer 8

and layer 9 both depends on the output of layer 3. To save

time, we can compute the output of layer 3 once (e.g., during

output computation of layer 8) and then use this output if

required(e.g., to compute output of layer 9 later).

In addition, we compute the longest possible sequence of

layers when we recursively compute the inputs of super nodes.

For example, layer 10 requires outputs of layer 8 and 9 when

injecting faults on layer 2. To get outputs of layer 8 and 9, we

need all of the following computations.

• Compute output of layer 3 and 5 using layer 2

• Compute output of layer 4 and 7 using layer 3

• Compute output of layer 6 using layer 5

• Compute output of layer 9 using layer 4 and 6

• Compute output of layer 8 using layer 7

We can see that we need to compute for a total of seven

layers’ outputs. However, if we detect the longest sequences

of layers that can be computed at a time, the computation

overhead reduces significantly. That is, if we detect the longest

sequences such as layer 2-3-7-8, 2-3-4, 2-5-6 and (4,6)-9, we

need to compute only four layers’ outputs(e.g., layer 8, 4, 6,

9), making TENSORFI+ more efficient and faster in fault injec-

tions of non-sequential models. As real-world DNN models are

usually complex and non-sequential, more opportunities are

presented to prune more longest sequences. Thus, both of the

above strategies provide significant performance improvement

compared to naive recursive approach.

V. METHODOLOGY

In this section, we formulate supergroups for DNN output

classes based on safety metrics in the context of AVs, and

discuss how we determine DNN failures in our experiments.

We make our code publicly available1.

A. Supergroup Formation

We focus on two popular datasets in this paper, they are

ImageNet [46] and CIFAR-100 [47] datasets. Both datasets

contain images reflecting common objects of diverse types.

Our first step is to group similar objects of DNN output

classes based on their characteristics and safety severity. Since

our analysis target is safety in AVs, we then merge these

groups into different supergroups from the perspective of AV

decisions in driving scenarios. For example, a truck and a cab

are two different output classes in both datasets. However, an

AV will likely react to a truck and a cab in a similar way

during the self-driving and hence they will be in the same

supergroup in our formulation. However, the actions will be

likely different if an AV detects a person as a clock. So, we put

person and clock in different groups. In this way, we categorize

all the output classes into multiple groups in each dataset

respectively and then finally combine these groups into two

supergroups, named as Supergroup A and Supergroup B.

Our aim is to keep all the safety critical classes in Su-

pergroup A which infers that inter-group misclassifications of

Supergroup A are safety-critical, but intra-group ones are not.

For example, classes such as person, vehicles, big animals,

large objects are in supergroup A. So, predicting a boy as a

girl (both are person) is not safety-critical, but predicting a

boy (person) as a car (vehicle) is safety-critical. Supergroup B

contains non-safety-critical classes such as household chores,

small animals etc. Any misclassification within Supergroup B

is not considered to be safety-critical. For example, predicting

a flower as a spider is not safety critical, because AVs reactions

to these two are likely similar. Additionally, misclassification

of a object from supergroup A to some object in supergroup

B will be safety-critical but the opposite is not true. For

example, predicting a boy (in supergroup A) to a flower (in

supergroup B) might cause accident. However, predicting a

flower (in supergroup B) to a boy (in supergroup A) results

in AV overcautious reactions, which is not safety-critical. We

use the two supergroups as the metrics in our fault injection

evaluation. We list the details of each supergroup in ImageNet

and CIFAR-100 in Table II in the Appendix.

1) CIFAR-100 Supergroups: CIFAR-100 dataset has a total

of 100 output classes which fall into a total of 20 categories

according to the official documentation [48]. According to

our proposed method of formulating supergroups, we combine

these CIFAR-100 categories into the two supergroups (details

are in Table II in Appendix). The first supergroup contains

significantly distinct objects where misclassification between

them is safety-critical. For example, People, Large Animals,
Two Wheelers, Four Wheelers, and Large Outdoor Objects are

1https://github.com/sabuj7177/characterizing DNN failures

58

Authorized licensed use limited to: The University of Iowa. Downloaded on February 20,2023 at 01:17:27 UTC from IEEE Xplore. Restrictions apply.

in the Supergroup A. On the other hand, Household Objects,
Small Animals, and Trees are in Supergroup B. We provide the

main rationale behind the CIFAR-100 supergrouping below.

• We consider people as an unique group in Supergroup

A because they are different from vehicles, animals,
buildings, etc. So the actions related to a person should

be different for a AV.

• Generally, vehicles are moving objects. So, actions related

to a vehicle are different than any other objects and so

they are in Supergroup A. Additionally, two-wheelers
and four-wheelers lead to different AV reactions because

two-wheelers need significantly reduced space than four-
wheelers on the road. So misclassifying a four-wheeler
to a two-wheeler might lead to severe consequences. So,

they are two different groups in Supergroup A.

• Large outdoor objects such as bridges, houses, and moun-
tains are huge in size. If an AV predicts a house (static)

as a car (dynamic), the reactions might be different. So,

they are considered as a different group in Supergroup

A.

• Actions related to large animals such as elephants, tigers
are likely different than that of vehicles, persons, or out-
door objects. So they are considered to be in Supergroup

A.

• Misclassifications of small household objects and small
animals are unlikely safety-critical. So, they all are placed

in Supergroup B.

2) ImageNet Supergroups: ImageNet dataset has a total

of 1,000 classes. There is an hierarchy of classes for the

dataset in the documentation [49]. Using the hierarchy of this

dataset, we divide the output classes into 10 different groups

based on safety concern of AVs. We further classify them into

two supergroups. Details are in Table II in Appendix. Below

we provide the major rationale behind the supergrouping in

ImageNet.

• Similarly to CIFAR-100, two-wheelers are considered

different from four-wheelers and placed them to two

different groups in Supergroup A.

• Emergency vehicles are considered in different group

from four-wheelers because emergency vehicles often

need more precedence than normal cars in traffic signals.

• Different types of buildings, bridges, fountains, moun-
tains are considered into a different group in Supergroup

A because of their large size and structure.

• Similar to CIFAR-100, persons are also considered as a

different group in Supergroup A.

• Planes and birds are in different supergroups because

AVs will likely take different actions to each.

• Different types of tools and household objects, water
vehicles, small animals are placed in Supergroup B

because misclassification among these classes will not be

safety-critical.

B. Failure Outcomes
In this subsection, we define different types of failure

outcomes in our experiment.

Correct Classification Probability: During fault-free infer-

ence, the images which are correctly predicted by the model.

Masking Probability: Masking probability is the probabil-

ity of predictions that are the same as the original fault-free

predictions.

SCM and Non-SCM Probability: Safety-critical-

misclassification (SCM) probability can be computed during

both fault-free inference and fault injection experiments.

During fault-free inference, we refer SCM probability as

the misclassification probability when the original label is

in Supergroup A and the predicted label is in Supergroup

B or they are from different classes within Supergroup A.

In this case, the SCMs are caused by intrinsic algorithmic

inaccuracy of the DNN model. During fault injection, this

probability is computed between fault-free prediction and

fault-injected prediction. On the other hand, non-SCM

probability complements to SCM probability, and they add

up to 100%.

C. Fault Injection Methods

In our fault injection experiments, we randomly sample

10,000 images from each ImageNet [46] and GTSRB [50]

dataset test sets. For both these datasets, the sampled dataset

has around similar distribution of category A and B as the

original dataset. For example, the original test set of Ima-

geNet contains around 25% and 75% data which are from

Supergroup A and Supergroup B, respectively. After random

sampling the resulting sampled dataset has around 30% and

70% data from Supergroup A and Supergroup B, respectively.

As CIFAR-100 [47] has 10000 images in the test set, we use

the full test for our experiment.

First, we run inference on the sampled datasets to get the

accuracy (and so the intrinsic algorithmic inaccuracy) for all

the models. We calculate the SCM and non-SCM probabilities

for each model due to intrinsic model inaccuracies. Then we

inject 3,000 random faults on both correctly classified as well

as misclassified images to determine the SCM and non-SCM

probabilities. We follow the one-fault-per-execution model, a

common practice in the related studies in the literature [28]–

[31]. For each fault injection run, we randomly sample one

tensor from the randomly chosen layer of the model and

randomly flip a bit.

VI. EXPERIMENTAL SETUP

A. Datasets and DNN Models

We use ImageNet [46], CIFAR-100 [47] and German Traffic

Sign Recognition Benchmark(GTSRB) [50] datasets for our

experiment. The former two datasets are popularly used for

standard classification tasks and the later one contains real

world traffic sign datasets and specifically used in object

detection for AVs. We use GTSRB dataset to show that

TENSORFI+ can work with datasets and models related to

AVs. In our experiments, we have 13 DNN models for CIFAR-

100, 12 DNN models for ImageNet and 5 DNN models for

GTSRB. For ImageNet, we adopt pre-trained models which

59

Authorized licensed use limited to: The University of Iowa. Downloaded on February 20,2023 at 01:17:27 UTC from IEEE Xplore. Restrictions apply.

are available on Keras2 such as VGG, DenseNets, ResNets,

MobileNets, Inception. For CIFAR-100 and GTSRB, since

the pre-trained models are not directly available, we train the

DNN models using pytorch. Then we convert the pre-trained

models from pytorch to TensorFlow 2 using pytorch2keras3

module. The top-1 accuracy and masking probability of all

these models are shown in Table I.

B. Hardware

All of our experiments are conducted on Linux machines

running Ubuntu 20.04 with Intel CPUs.

C. Research Questions

We conduct our evaluation by asking 2 research questions

below:

• RQ1: What is the DNN SCM and non-SCM probability

due to intrinsic algorithmic inaccuracy?

• RQ2: Is DNN SCM probability caused by transient

hardware faults different compared with that of intrinsic

algorithmic inaccuracy?

VII. RESULTS

We organize our results by research questions (RQs).

A. RQ1: What is the DNN SCM and non-SCM probability
due to intrinsic algorithmic inaccuracy

In this RQ, we study how intrinsic algorithmic inaccuracy

raises safety concern for DNN models. As mentioned, we

run inference over 10,000 randomly sampled images for each

DNN model of each dataset and identify the accuracy. Among

the misclassified images, we summarize how many of them are

SCMs and non-SCMs.

0%

20%

40%

60%

80%

100%

Non-SCM SCM

C
la

ss
ifi

ca
tio

n
Pe

rc
en

ta
ge

Failure Outputs

VGG11
VGG13
VGG16
VGG19
GoogleNet
InceptionV3
InceptionV4
ResNet18
ResNet34
ResNet50
ResNet101
ResNet152
Xception

Fig. 4: SCM and non-SCM due to intrinsic algorithmic inac-

curacy in DNNs with CIFAR-100 dataset

The results are shown in Table I. We can see that the

accuracy of CIFAR-100 dataset without any fault injections

2https://keras.io/api/applications/
3https://github.com/gmalivenko/pytorch2keras

0%

20%

40%

60%

80%

100%

Non-SCM SCM

C
la

ss
ifi

ca
tio

n
Pe

rc
en

ta
ge

Failure Outputs

VGG16
VGG19
MobileNet
MobileNetV2
ResNet50
ResNet101
ResNet152
Xception
DenseNet121
DenseNet169
InceptionResNetV2
InceptionV3

Fig. 5: SCM and non-SCM due to intrinsic algorithmic inac-

curacy in DNNs with ImageNet dataset

is between 65% to 80% across all the models. That means,

there are around 20% to 35% of images that are misclassified

due to the model intrinsic algorithmic inaccuracy. We further

examine the probabilities of SCMs and non-SCMs. In Fig-

ure 4, we show the SCM and non-SCM probabilities among

the misclassified images in CIFAR-100 dataset. We can see

that around 80% of misclassified images are non-SCMs, that

is, they are unlikely safety-critical concerns in AVs.

On the other hand, from Table I, we observe there are

20% to 30% of misclassifications in the DNNs with ImageNet

dataset. In Figure 5, we can see that, among the misclas-

sified images, more than 90% of the misclassifications are

non-SCMs, leaving less than 10% misclassifications SCMs.

Based on the results, we report that although SCMs are non-

negligible in DNNs due to intrinsic algorithmic inaccuracy,

most of misclassifications in DNNs tend to be non-SCMs,

without injecting transient hardware faults.

Table III in Appendix lists examples (ResNet101) of mis-

classifications (both SCMs and non-SCMs) due to algorithmic

intrinsic inaccuracy.

We sample several object classes in CIFAR-100 dataset, and

see how the DNN misclassifies the objects.

As reported, for apple object, all the 11 misclassifications

we observe result in other objects like mushrooms and pears.

These objects are closely similar to apple in shapes and

properties and will unlikely cause any safety concerns for

AVs. Apple does not have any predictions that result in SCMs.

Thereby the SCM probability in apple object is minimal.

On the other hand, other sampled objects tend to have both

SCMs and non-SCMs among the misclassifications, but as

mentioned, the non-SCMs probability is significantly higher

than SCMs. Recall that the non-SCMs tend to result in closely

similar and related objects as the original object in these

samples. For example, girl, boy, man, and woman are non-

SCMs when the DNN misclassifies a baby. Similarly, streetcar,
pickup trucks, and tanks are non-SCM of a bus.

60

Authorized licensed use limited to: The University of Iowa. Downloaded on February 20,2023 at 01:17:27 UTC from IEEE Xplore. Restrictions apply.

Model Name Dataset Top-1
Accu-
racy

Masking
Prob-
ability
on
Cor-
rectly
Clas-
sified

Masking
Prob-
ability
on
Mis-
classi-
fied

VGG16 ImageNet 71.18% 96.57% 96.13%
VGG19 ImageNet 71.35% 96.73% 96.27%
ResNet50 ImageNet 74.76% 98.33% 98.33%
ResNet101 ImageNet 76.14% 98.50% 98.43%
ResNet152 ImageNet 76.38% 98.03% 98.23%
MobileNet ImageNet 70.25% 98.23% 98.77%
MobileNetV2 ImageNet 71.07% 99.37% 98.83%
DenseNet121 ImageNet 75.04% 98.63% 98.80%
DenseNet169 ImageNet 75.76% 98.63% 98.47%
Xception ImageNet 78.92% 97.97% 98.33%
InceptionV3 ImageNet 77.77% 97.67% 98.63%
InceptionResNetV2 ImageNet 80.11% 98.73% 98.93%
VGG11 CIFAR-100 69.12% 98.60% 98.67%
VGG13 CIFAR-100 71.51% 98.70% 98.60%
VGG16 CIFAR-100 72.33% 98.97% 98.90%
VGG19 CIFAR-100 71.53% 99.20% 98.50%
ResNet18 CIFAR-100 76.35% 98.63% 99.03%
ResNet34 CIFAR-100 77.68% 99.23% 98.83%
ResNet50 CIFAR-100 78.52% 98.57% 98.60%
ResNet101 CIFAR-100 78.93% 99.17% 98.63%
ResNet152 CIFAR-100 79.68% 98.63% 98.93%
GoogleNet CIFAR-100 76.70% 98.80% 98.60%
InceptionV3 CIFAR-100 79.45% 98.80% 98.77%
InceptionV4 CIFAR-100 77.80% 98.57% 98.30&
Xception CIFAR-100 77.96% 97.76% 98.00%
VGG16 GTSRB 97.57% 99.36% 98.83%
VGG19 GTSRB 98.25% 99.1% 99.1%
ResNet34 GTSRB 98.98% 98.43% 98.5%
ResNet50 GTSRB 97.91% 98.93% 98.93%
ResNet101 GTSRB 98.55% 99.26% 98.76%

TABLE I: Top-1 accuracy and masking probability on initially

correct and incorrect classifications

B. RQ2: Is DNN SCM probability caused by transient
hardware faults different compared with that of intrinsic
algorithmic inaccuracy

In Table I, we show the SCM and non-SCM probabilities

of DNNs when we inject transient hardware faults. We do

so by injecting faults on both initially correctly classified and

initially misclassified images in the two datasets with all the

DNN models.

For CIFAR-100, when we injected faults on correctly clas-

sified images, about 98% to 99% faults are masked. Overall,

there is around an average of 1% to 2% SDCs observed across

DNNs. From Figure 6 and 7, we can see that, among all

the SDCs, an average of 20% to 50% resulted in SCMs.

More specifically, there are 30% to 40% SCMs observed

in initially correct classifications, whereas it is 20% to 50%

of SCMs in initially misclassified images. On average, the

SCM probability across DNNs in CIFAR-100 is around 37%.

Examples of SCMs and non-SCMs due to transient hardware

faults can be found in Table IV in Appendix.

In ImageNet, we observe a very similar pattern. There are

1% to 4% SDCs as results of fault injections. Among all the

SDCs, we observe there are 10% to 38% SCMs in the initially

correct classifications across DNNs, whereas it is 14% to

36% in the initially misclassified images(Figure 8 and 9). The

overall SCM probability is 26% across DNNs in ImageNet,

which is similar to what we measured in CIFAR-100.

Finally, we observe that the SCM probability due to tran-

sient hardware faults is about 2.3 times and 4.1 times higher

than that of intrinsic algorithmic inaccuracy in CIFAR-100

and ImageNet respectively, indicating that transient hardware

faults may likely result in more SCMs and causing safety-

related concerns in AVs.

As the accuracy of DNNs continues to improve while the

soft error rates keep increasing, we expect the tend will only

widen in the future.

0%

20%

40%

60%

80%

100%

Non-SCM SCM

C
la

ss
ifi

ca
tio

n
Pe

rc
en

ta
ge

Failure Outputs

VGG11
VGG13
VGG16
VGG19
GoogleNet
InceptionV3
InceptionV4
ResNet18
ResNet34
ResNet50
ResNet101
ResNet152
Xception

Fig. 6: SCM and non-SCM due to transient hardware faults

on initially correct classification in DNNs with CIFAR-100

dataset

VIII. RELATED WORK

There have been many works that studies DNN resilience

and accuracy. Tian et al. [51] used transformation matrices

(e.g., scale, rotate the image) to automatically generate corner

case images to trigger unexpected behaviors of the model.

Ma et al. [52] designed a mutation framework to fuzz DNN

models, the tecnique was then used to evaluate the test data

quality. These studies focus on improve DNN accuracy.

Rubaiyat et al. [53] built a strategic software FI framework,

which leverages hazard analysis to identify potential unsafe

scenarios to prune the injection space. However, they did

not consider transient hardware faults. Li et al. [18] build a

fault injector to evaluate transient hardware faults in DNN

applications and studied their resilience.

Chen et al. propose BinFI [25], an efficient fault injector

for finding the safety-critical bits of ML applications. These

papers measured the DNN resilience under hardware faults

and reported SDCs in DNNs. However, unlike our study, none

61

Authorized licensed use limited to: The University of Iowa. Downloaded on February 20,2023 at 01:17:27 UTC from IEEE Xplore. Restrictions apply.

0%

20%

40%

60%

80%

100%

Non-SCM SCM

C
la

ss
ifi

ca
tio

n
Pe

rc
en

ta
ge

Failure Outputs

VGG11
VGG13
VGG16
VGG19
GoogleNet
InceptionV3
InceptionV4
ResNet18
ResNet34
ResNet50
ResNet101
ResNet152
Xception

Fig. 7: SCM and non-SCM due to transient hardware faults

on initially misclassified images in DNNs with CIFAR-100

dataset

0%

20%

40%

60%

80%

100%

Non-SCM SCM

C
la

ss
ifi

ca
tio

n
Pe

rc
en

ta
ge

Failure Outputs

VGG16
VGG19
MobileNet
MobileNetV2
ResNet50
ResNet101
ResNet152
Xception
DenseNet121
DenseNet169
InceptionResNetV2
InceptionV3

Fig. 8: SCM and non-SCM due to transient hardware faults on

initially correct classification in DNNs with ImageNet dataset

of them compared the impacts of DNN failures caused by

intrinsic algorithmic inaccuracy and hardware faults.

IX. CONCLUSION

In this work, we investigate how the hardware transient

faults change the prediction of DNN models based on safety-

critical metrics compared to algorithmic intrinsic inaccuracy.

Our intuition is that intrinsic algorithmic inaccuracy may not

change the original prediction to a great extent. But a transient

hardware fault may modify any bit position and lead to a

drastic change in the numerical value of computations. For this

experiment, we use two popularly used classification datasets

named ImageNet and CIFAR-100 and group the labels based

on safety-related metrics. We evaluate our analysis on 25

popularly used DNN models. Our evaluation demonstrates that

without hardware faults, the safety-critical misclassification

probability is around 5% to 10%, but under hardware faults,

0%

20%

40%

60%

80%

100%

Non-SCM SCM

C
la

ss
ifi

ca
tio

n
Pe

rc
en

ta
ge

Failure Outputs

VGG16
VGG19
MobileNet
MobileNetV2
ResNet50
ResNet101
ResNet152
Xception
DenseNet121
DenseNet169
InceptionResNetV2
InceptionV3

Fig. 9: SCM and non-SCM due to transient hardware faults on

initially misclassified images in DNNs with ImageNet dataset

this probability drastically increases around 4 times to up

to 40%, indicating DNN systems in safety-critical systems

likely need to be protected from transient hardware faults even

though the model intrinsic accuracy in not 100%.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 06 2016, pp. 770–778.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, Eds., vol. 25. Curran Associates, Inc.,
2012. [Online]. Available: https://proceedings.neurips.cc/paper/2012/
file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[3] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Diele-
man, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap,
M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering
the game of go with deep neural networks and tree search,” Nature, vol.
529, pp. 484–489, 01 2016.

[4] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv 1409.1556, 09 2014.

[5] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and
O. Temam, “Diannao: A small-footprint high-throughput accelerator for
ubiquitous machine-learning,” ser. ASPLOS ’14. New York, NY, USA:
Association for Computing Machinery, 2014, p. 269–284. [Online].
Available: https://doi.org/10.1145/2541940.2541967

[6] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun, and O. Temam, “Dadiannao: A machine-learning
supercomputer,” in Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-47. USA:
IEEE Computer Society, 2014, p. 609–622. [Online]. Available:
https://doi.org/10.1109/MICRO.2014.58

[7] F. Fernandes, L. Weigel, C. Jung, P. Navaux, L. Carro, and P. Rech,
“Evaluation of histogram of oriented gradients soft errors criticality for
automotive applications,” ACM Trans. Archit. Code Optim., vol. 13,
no. 4, nov 2016. [Online]. Available: https://doi.org/10.1145/2998573

[8] M. Bojarski, D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,
L. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and
K. Zieba, “End to end learning for self-driving cars,” 04 2016.

[9] A. Esteva, B. Kuprel, R. Novoa, J. Ko, S. Swetter, H. Blau, and
S. Thrun, “Dermatologist-level classification of skin cancer with deep
neural networks,” Nature, vol. 542, 01 2017.

[10] P. Rajpurkar, A. Hannun, M. Haghpanahi, C. Bourn, and A. Ng,
“Cardiologist-level arrhythmia detection with convolutional neural net-
works,” 07 2017.

62

Authorized licensed use limited to: The University of Iowa. Downloaded on February 20,2023 at 01:17:27 UTC from IEEE Xplore. Restrictions apply.

[11] H.-J. Yoon, A. Ramanathan, and G. Tourassi, “Multi-task deep neural
networks for automated extraction of primary site and laterality infor-
mation from cancer pathology reports,” 10 2017, pp. 195–204.

[12] Z. Xiong, M. Stiles, and J. Zhao, “Robust ecg signal classification for
the detection of atrial fibrillation using novel neural networks,” 09 2017.

[13] N. DeBardeleben, J. Laros, J. T. Daly, S. L. Scott, C. Engelmann, and
B. Harrod, “High-end computing resilience: Analysis of issues facing
the hec community and path-forward for research and development,”
Whitepaper, Dec, 2009.

[14] B. Schroeder and G. Gibson, “Understanding failures in petascale
computers,” Journal of Physics: Conference Series, vol. 78, 09 2007.

[15] S. Borkar, “Designing reliable systems from unreliable components:
The challenges of transistor variability and degradation,” vol. 25, no. 6,
p. 10–16, nov 2005. [Online]. Available: https://doi.org/10.1109/MM.
2005.110

[16] C. Constantinescu, “Intermittent faults and effects on reliability of
integrated circuits,” Reliability and Maintainability Symposium, vol. 0,
pp. 370–374, 01 2008.

[17] B. Reagen, U. Gupta, L. Pentecost, P. Whatmough, S. Lee, N. Mulhol-
land, D. Brooks, and G.-Y. Wei, “Ares: a framework for quantifying the
resilience of deep neural networks,” 06 2018, pp. 1–6.

[18] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer,
and S. W. Keckler, “Understanding error propagation in deep learning
neural network (dnn) accelerators and applications,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’17. New York, NY,
USA: Association for Computing Machinery, 2017. [Online]. Available:
https://doi.org/10.1145/3126908.3126964

[19] F. dos Santos, C. Lunardi, D. Oliveira, F. Libano, and P. Rech, “Reliabil-
ity evaluation of mixed-precision architectures,” 02 2019, pp. 238–249.

[20] “Tensorfi with support of tensorflow 2 and keras,” https://github.com/
DependableSystemsLab/TensorFI2.

[21] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for large-scale
machine learning,” in Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation, ser. OSDI’16. USA:
USENIX Association, 2016, p. 265–283.

[22] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks
and applications in vision,” in Proceedings of 2010 IEEE International
Symposium on Circuits and Systems, 2010, pp. 253–256.

[23] S. S. Mukherjee, J. Emer, and S. K. Reinhardt, “The soft error problem:
An architectural perspective,” in 11th International Symposium on High-
Performance Computer Architecture. IEEE, 2005, pp. 243–247.

[24] S. Feng, S. Gupta, A. Ansari, and S. Mahlke, “Shoestring: probabilistic
soft error reliability on the cheap,” ACM SIGARCH Computer Architec-
ture News, vol. 38, no. 1, pp. 385–396, 2010.

[25] Z. Chen, G. Li, K. Pattabiraman, and N. DeBardeleben, “¡i¿binfi¡/i¿:
An efficient fault injector for safety-critical machine learning systems,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’19. New
York, NY, USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3295500.3356177

[26] M. Sabbagh, C. Gongye, Y. Fei, and Y. Wang, “Evaluating fault
resiliency of compressed deep neural networks,” in 2019 IEEE Interna-
tional Conference on Embedded Software and Systems (ICESS), 2019,
pp. 1–7.

[27] C.-K. Chang, S. Lym, N. Kelly, M. B. Sullivan, and M. Erez, “Eval-
uating and accelerating high-fidelity error injection for hpc,” in SC18:
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2018, pp. 577–589.

[28] G. Li, K. Pattabiraman, S. K. S. Hari, M. Sullivan, and T. Tsai, “Model-
ing soft-error propagation in programs,” in 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
2018, pp. 27–38.

[29] R. A. Ashraf, R. Gioiosa, G. Kestor, R. F. DeMara, C.-Y. Cher, and
P. Bose, “Understanding the propagation of transient errors in hpc
applications,” in SC ’15: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
2015, pp. 1–12.

[30] B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi, “Gpu-qin: A
methodology for evaluating the error resilience of gpgpu applications,”

in 2014 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2014, pp. 221–230.

[31] J. Wei, A. Thomas, G. Li, and K. Pattabiraman, “Quantifying the
accuracy of high-level fault injection techniques for hardware faults,” in
2014 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, 2014, pp. 375–382.

[32] B. Sangchoolie, K. Pattabiraman, and J. Karlsson, “One bit is (not)
enough: An empirical study of the impact of single and multiple bit-flip
errors,” in 2017 47th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 2017, pp. 97–108.

[33] S. Jha, S. S. Banerjee, J. Cyriac, Z. T. Kalbarczyk, and R. K. Iyer,
“Avfi: Fault injection for autonomous vehicles,” in 2018 48th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works Workshops (DSN-W), 2018, pp. 55–56.

[34] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie,
L. Li, Y. Liu, J. Zhao, and Y. Wang, “Deepmutation: Mutation
testing of deep learning systems,” 2018. [Online]. Available: https:
//arxiv.org/abs/1805.05206

[35] Z. Chen, N. Narayanan, B. Fang, G. Li, K. Pattabiraman, and
N. DeBardeleben, “Tensorfi: A flexible fault injection framework for
tensorflow applications,” 2020. [Online]. Available: https://arxiv.org/
abs/2004.01743

[36] L. Fridman, D. E. Brown, M. Glazer, W. Angell, S. Dodd, B. Jenik,
J. Terwilliger, A. Patsekin, J. Kindelsberger, L. Ding, S. Seaman,
A. Mehler, A. Sipperley, A. Pettinato, B. D. Seppelt, L. Angell,
B. Mehler, and B. Reimer, “Mit advanced vehicle technology study:
Large-scale naturalistic driving study of driver behavior and interaction
with automation,” IEEE Access, vol. 7, pp. 102 021–102 038, 2019.

[37] T. Ozturk, M. Talo, E. A. Yildirim, U. B. Baloglu, O. Yildirim,
and U. Rajendra Acharya, “Automated detection of covid-19 cases
using deep neural networks with x-ray images,” Computers in
Biology and Medicine, vol. 121, p. 103792, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0010482520301621

[38] V. Kothari, E. Liberis, and N. D. Lane, “The final frontier: Deep learning
in space,” 2020. [Online]. Available: https://arxiv.org/abs/2001.10362

[39] “Keras applications,” https://keras.io/api/applications/.
[40] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi,

P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson, A. A. Chien,
P. Coteus, N. A. Debardeleben, P. C. Diniz, C. Engelmann, M. Erez,
S. Fazzari, A. Geist, R. Gupta, F. Johnson, S. Krishnamoorthy,
S. Leyffer, D. Liberty, S. Mitra, T. Munson, R. Schreiber, J. Stearley,
and E. V. Hensbergen, “Addressing failures in exascale computing,”
Int. J. High Perform. Comput. Appl., vol. 28, no. 2, p. 129–173, may
2014. [Online]. Available: https://doi.org/10.1177/1094342014522573

[41] S. K. S. Hari, S. V. Adve, and H. Naeimi, “Low-cost program-level de-
tectors for reducing silent data corruptions,” in IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN 2012), 2012,
pp. 1–12.

[42] G. Li, Q. Lu, and K. Pattabiraman, “Fine-grained characterization
of faults causing long latency crashes in programs,” in 2015 45th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, 2015, pp. 450–461.

[43] A. Mahmoud, S. K. S. Hari, C. W. Fletcher, S. V. Adve, C. Sakr,
N. Shanbhag, P. Molchanov, M. B. Sullivan, T. Tsai, and S. W. Keckler,
“Optimizing selective protection for cnn resilience,” in 32nd IEEE
International Symposium on Software Reliability Engineering, ISSRE
2021. IEEE Computer Society, 2021, pp. 127–138.

[44] G. Li, K. Pattabiraman, and N. DeBardeleben, “Tensorfi: A configurable
fault injector for tensorflow applications,” in 2018 IEEE International
symposium on software reliability engineering workshops (ISSREW).
IEEE, 2018, pp. 313–320.

[45] “Tensorflow popularity,” https://towardsdatascience.com/
deep-learning-framework-power-scores-2018-23607ddf297a.

[46] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[47] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Tech. Rep., 2009.

[48] “Cifar-100 dataset description,” https://www.cs.toronto.edu/∼kriz/cifar.
html.

[49] “Imagenet hiererchy,” https://observablehq.com/@mbostock/
imagenet-hierarchy.

[50] S. Houben, J. Stallkamp, J. Salmen, M. Schlipsing, and C. Igel,
“Detection of traffic signs in real-world images: The German Traffic

63

Authorized licensed use limited to: The University of Iowa. Downloaded on February 20,2023 at 01:17:27 UTC from IEEE Xplore. Restrictions apply.

Sign Detection Benchmark,” in International Joint Conference on Neural
Networks, no. 1288, 2013.

[51] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing
of deep-neural-network-driven autonomous cars,” in Proceedings of the
40th International Conference on Software Engineering, ser. ICSE ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
303–314. [Online]. Available: https://doi.org/10.1145/3180155.3180220

[52] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie,
L. Li, Y. Liu, J. Zhao, and Y. Wang, “Deepmutation: Mutation
testing of deep learning systems,” 2018. [Online]. Available: https:
//arxiv.org/abs/1805.05206

[53] A. H. M. Rubaiyat, Y. Qin, and H. Alemzadeh, “Experimental
resilience assessment of an open-source driving agent,” in 2018
IEEE 23rd Pacific Rim International Symposium on Dependable
Computing (PRDC). IEEE, dec 2018. [Online]. Available: https:
//doi.org/10.1109%2Fprdc.2018.00016

64

Authorized licensed use limited to: The University of Iowa. Downloaded on February 20,2023 at 01:17:27 UTC from IEEE Xplore. Restrictions apply.

APPENDIX

TABLE II: Supergroup formation

CIFAR-
100

SG A

People baby, boy, girl, man, woman

Large Animals bear, lion, tiger, wolf, dolphin, whale, camel, cattle, chimpanzee, elephant

Two Wheelers bicycle, motorcycle

Four Wheelers bus, pickup truck, train, lawn-mower, rocket, streetcar, tank, tractor

Large Outdoor Objects bridge, castle, house, road, skyscraper, forest, mountain, sea

SG B

Household Objects apples, oranges, roses, tulips, bottles, bowls, plates, clock, television, bed, table

Small Animals aquarium fish, ray, bee, beetle, cockroach, snail, spider, lizard, snake, mouse, rabbit

Trees maple, oak, palm, pine, willow

ImageNet

SG A

Emergency Vehicle ambulance, fire engine, police van, stretcher, army tank

Two Wheeler tandem bicycle, moped, motor scooter, mountain bike, tricycle, unicycle

Four Wheeler amphibious vehicle, cab, jeep, limousine, school bus, sports car, tractor

Person ballplayer, groom, scuba diver

Big Animals ostrich, Mexican hairless, timber wolf, cougar, hippopotamus, African elephant

Geological Formation
and Structure

bakery, barn, castle, fountain, palace, cliff, seashore, valley, volcano

SG B

Aerial Objects magpie, kite, peacock, hummingbird, airliner, airship, balloon, warplane

Water Vehicles aircraft carrier, fireboat, container ship, pirate ship, submarine, speedboat

Small Animals goldfish, bullfrog, green lizard, Komodo dragon, king snake, snail, mongoose

Tools and Household
Chores

baseball, binoculars, birdhouse, can opener, cello, cloak, desktop computer

65

Authorized licensed use limited to: The University of Iowa. Downloaded on February 20,2023 at 01:17:27 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Misclassification examples due to intrinsic algorithmic inaccuracy

Dataset
Name

Model
Name

Original
Class

Total
SCM
count

Sample SCM Predictions Total
non-
SCM
count

Sample non-SCM Predictions

CIFAR-100 ResNet101

apple 0 - 11 mushroom, sweet pepper, pear

baby 8 bed, television, chimpanzee,
tractor, tulip, snail, butterfly,
orchid

26 girl, boy, woman, man

bear 6 hamster, bowl, lobster, bee,
mouse, shrew

25 otter, elephant, beaver, chim-
panzee, lion, camel, seal, cattle,
whale, kangaroo

bus 6 pine tree, television, can, mo-
torcycle, couch, bridge

18 streetcar, pickup truck, tank

ImageNet DenseNet121

green lizard 0 - 8 common iguana, alligator
lizard, whiptail, american
chameleon

minivan 2 ambulance, odometer 5 cab, racer, beach wagon,
pickup

screen 0 - 11 television, desktop computer,
desk, iron, home theater, note-
book

passenger
car

2 gas pump, fire engine 3 electric locomotive, steam lo-
comotive

66

Authorized licensed use limited to: The University of Iowa. Downloaded on February 20,2023 at 01:17:27 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Misclassification examples due to transient hardware faults

Dataset
Name

Model
Name

Initial
Classi-
fication
Type

Original
Class

Initial
Predicted
Class

Total
SDC

SCM labels after FI non-SCM labels after
FI

CIFAR-100 ResNet101

Correct
Train Train 2 Clock(1), Girl(1) -

Tank Tank 10 Keyboard(4), Trout(1),
Clock(4), Apple(1)

-

SCM
Man Chimpanzee 5 Mushroom(1),

Possum(1), Clock(2),
Keyboard(1)

-

bridge streetcar 4 Keyboard(1), Clock(2),
Flatfish(1)

-

Non-
SCM

Woman Girl 4 Camel(1),
Keyboard(1),
Tractor(1), Lawn-
mower(1)

-

Bus Streetcar 5 Clock(2), Crocodile(1),
Tulip(1), Keyboard(1)

-

ImageNet DenseNet121

Correct
Police Van Police Van 10 Tench(6), Pencil

Sharpener(1),
Broccoli(1), Husky(1),
Stethoscope(1)

-

Passenger
Car

Passenger
Car

6 American lobster(1),
Mixing bowl(1), Waffle
iron(1), Saltshaker(1),
Ping-pong ball(1),
Microwave(1)

-

SCM
scuba diver snorkel 10 - Cradle(1), Broccoli(1),

Ping-pong ball(1),
Papillon(1),
Tench(1), Scuba
diver(1), Strainer(1),
Microwave(1),
Bassinet(1)

Street Sign Parking
Meter

14 - Tench(5), Letter
opener(1), Horizontal
bar(1), Pay-phone(1),
Ping-pong ball(1),
Teddy(1), Cassette
player(1), Street
sign(2), Trash can(1)

Non-
SCM

Limousine Minibus 11 Tench(3),
Stethoscope(1),
Television(1), Pool
table(1), Ping-pong
ball(1), Seat belt(1),
Saltshaker(1)

Forklift(1),
Limousine(1)

Timber
Wolf

Coyote 7 Screwdriver(1),
Ping-pong ball(3),
Television(1), Tench(2)

-

67

Authorized licensed use limited to: The University of Iowa. Downloaded on February 20,2023 at 01:17:27 UTC from IEEE Xplore. Restrictions apply.

