
Peppa-X: Finding Program Test Inputs to Bound Silent Data
Corruption Vulnerability in HPC Applications
Md Hasanur Rahman

University of Iowa
Iowa City, IA, USA

mdhasanur-rahman@uiowa.edu

Aabid Shamji
University of Iowa, USA

Iowa City, IA, USA
aabid-shamji@uiowa.edu

Shengjian Guo
Baidu Security

Sunnyvale, CA, USA
sjguo@baidu.com

Guanpeng Li
University of Iowa, USA

Iowa City, IA, USA
guanpeng-li@uiowa.edu

ABSTRACT

Transient hardware faults have become prevalent due to the shrink-
ing size of transistors, leading to silent data corruptions (SDCs).
Therefore, HPC applications need to be evaluated (e.g., via fault
injections) and protected to meet the reliability target. In the evalu-
ation, the target programs exercise with a set of given inputs which
are usually from program benchmark suite. However, these inputs
rarely manifest the SDC vulnerabilities, leading to over-optimistic
assessment and unexpectedly higher failure rates in production. We
propose Peppa-X, which efficiently identifies the test inputs that
estimate the bound of program SDC resiliency. Our key insight is
that the SDC sensitivity distribution in a program often remains
stationary across input space. Thereby, we can guide the search of
SDC-bound inputs by a sampled distribution. Our evaluation shows
that Peppa-X can identify the SDC-bound input of a program that
existing methods cannot find even with 5x more search time.

KEYWORDS

Error Resilience, Fault Injection, Silent Data Corruption, Software
Testing, Input Fuzzing, Program Analysis, Error Propagation, High
Performance Computing

ACM Reference Format:

Md Hasanur Rahman, Aabid Shamji, Shengjian Guo, and Guanpeng Li. 2021.
Peppa-X: Finding Program Test Inputs to Bound Silent Data Corruption
Vulnerability in HPC Applications. In The International Conference for High
Performance Computing, Networking, Storage and Analysis (SC ’21), November
14–19, 2021, St. Louis, MO, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3458817.3476147

1 INTRODUCTION

Transient hardware faults (e.g., soft errors) have been predicted to
increase in future processors due to growing system scales, pro-
gressive technology scaling, and lowering operating voltages [49].

SC ’21, November 14–19, 2021, St. Louis, MO, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8442-1/21/11.
https://doi.org/10.1145/3458817.3476147

In the past, those faults were typically masked through hardware-
only solutions like redundancy and voltage guard bands. Nowa-
days, deploying such solutions is increasingly challenging con-
cerning the significant energy cost, whereas energy is becoming
a first-class constraint in microprocessor design [10]. The prob-
lem is exacerbated in High Performance Computing (HPC) sys-
tems because of the large scale, and it has been one of the top
10 challenges in HPC [37]. As a result, researchers expect that
software needs to tolerate hardware faults with low overheads in
HPC [3, 5, 31, 48, 54, 55, 59].

Hardware faults can cause programs to fail by crashing, hanging,
or producing incorrect program outputs, also known as silent data
corruptions (SDCs). SDCs are severe concerns in practice because
there is no noticeable symptom that the program failed, and the
contaminated data continues propagating in program execution,
resulting in the wrong final output. Hence, developers have to eval-
uate the SDC probability of their applications before deployment. If
the assessment result fails to meet the resiliency target, developers
must selectively add extra protection to the most vulnerable parts
of the application until satisfying the target, without causing much
performance and energy overheads [1, 15, 20, 28, 29, 32, 42, 53].

Statistical fault injection is the common approach for evalu-
ating program resilience. In the evaluation, the target program
repeats executions with a test input for thousands of fault injection
(FI) campaigns to achieve statistical significance in the measure-
ment [17, 20, 41, 46, 51], thus obtaining the program’s overall SDC
probability. In each FI campaign, a single fault is injected into a ran-
domly sampled instruction during the execution. Existing studies
primarily use the test inputs provided in the benchmark suites of
the program [17, 28, 32, 38, 46]. However, those provided inputs are
often for performance and functionality testing. Evaluating with the
inputs rarely exploits the vulnerabilities caused by hardware faults,
leading to over-optimistic results for SDC evaluation and protec-
tion (we show that in Section 5). Consequently, HPC applications,
which run with cumulatively diverse inputs in practice, may suffer
from much higher-than-expected failure rates in the production
environment. Those unexpected failures seriously compromise the
HPC reliability and cause the applications fail to meet the reliability
target. Moreover, a recent paper has disclosed persuasive findings
in its computation infrastructures and confirms the observation,
revealing that applications are often under-evaluated for their re-
siliency in the evaluation phase and reporting more pervasive SDCs

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3458817.3476147
https://doi.org/10.1145/3458817.3476147
https://doi.org/10.1145/3458817.3476147
https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

SC ’21, November 14–19, 2021, St. Louis, MO, USA Md Hasanur Rahman, Aabid Shamji, Shengjian Guo, and Guanpeng Li

at scale in production [14]. The erroneous application outputs and
loss of data can cost months of debugging efforts [14]. Therefore,
it is crucially important to bound program SDC probability in the
evaluation and so the program can be properly protected in order
to meet the reliability target. We call such an input SDC-bound
input, which can help developers stress-test HPC applications in
the evaluation and hence protect them accordingly. Unfortunately,
such test inputs for SDC resiliency are not available in any HPC
benchmark suites.

A strawman method to find the SDC-bound input is to evaluate
every possible program input via statistical FIs. This approach ap-
pears to be unrealistic in terms of the vast input search space. Also,
the FIs can be prohibitively time-consuming – even a single HPC
program execution may take several hours. Repeating thousands of
FI campaigns for each input is by no means practical. Looking into
the software engineering community, researchers have drawn upon
code coverage to guide the search of the inputs that exhibit software
bugs [25]. However, we find a negligible correlation between the
code coverage of an input and the SDC vulnerability (Section 3);
thereby, one cannot simply use existing metrics like code coverage
to search for SDC-bound inputs.

In this paper, we propose Peppa-X, a compiler-based technique
that approximates the upper bound of the SDC probability in a pro-
gram without conducting extensive FIs. Peppa-X leverages static
and dynamic program analysis methods to identify program SDC-
bound input candidates that iteratively update the SDC probability
bound. The key insight is that the SDC sensitivity distribution
across program regions often remains stationary in program in-
put space. Therefore, we can guide the search of program input
towards the explorations of more vulnerable program paths based
on the distribution. The guided search helps maximize the program
SDC probability and identifies the corresponding SDC-bound in-
put. Besides, we develop two pruning heuristics that can efficiently
estimate the SDC sensitivity to avoid the unnecessary search. Fur-
thermore, we design a genetic-algorithm-based dynamic fuzzing
method to help locate SDC-bound input, which drastically speeds
up the entire process of Peppa-X. To our best knowledge, we are the
first one who designs automated program analysis techniques to iden-
tify test inputs that bound the SDC probability in HPC applications.

We outline the main contributions of this work as follows:

• We propose Peppa-X, an automated technique that efficiently
identifies the SDC-bound input set that exploits the SDC
vulnerability and depicts the upper bound of program SDC
probability in a timely manner.

• We implement Peppa-X with compiler-based static analysis
and fuzzing-based dynamic search. The found inputs lead
to as much as 32x higher SDC probability than the base-
line result. Meanwhile, the baseline method cannot find a
comparable result even given 5x more search time.

• We apply the SDC-bound input to stress test applications
protected by the popular selective instruction duplication.
Experiments show that the protections are often compro-
mised by the SDC-bound input, resulting in significantly
lower-than-expected SDC coverage (around 2.59x coverage
losses on average).

2 BACKGROUND

In this section, we first present our fault model, then define the
terms we use, followed by a brief description of the LLVM compiler
used in Peppa-X. Finally, we provide a brief overview of the genetic
algorithm used in our method.

2.1 Fault Model

In this paper, we consider transient hardware faults in the proces-
sor’s computing components, including pipeline stages, flip-flops,
and functional units. We do not consider faults in the memory or
caches, as we assume that ECC protects these. Likewise, we do not
consider faults in the processor’s control logic. Further, we ignore
faults in the instruction’s encoding as they can be detected through
other means, such as error-correcting codes. Finally, we assume
that the program does not jump to arbitrary, illegal addresses due
to execution faults, as this problem can be mitigated by control-
flow checking techniques [44]. However, the program may take a
legal but wrong branch. That is, the execution path is legal, but the
branch selection may be wrong due to propagated faults. Our fault
model is in line with other work in the area [1, 4, 11, 15, 17, 23?].

2.2 Terms and Definitions

• Fault Occurrence: The occurrence of a transient hardware
fault in the processor. The fault may or may not result in an
error in the running program.

• Fault Activation: The event corresponding to the manifes-
tation of the fault to the software, i.e., the fault becomes an
error and corrupts some portion of the execution state (e.g.,
register, memory location). The error may or may not result
in a failure (i.e., SDC, crash or hang).

• Crash:The raising of a hardware trap or exception due to the
error, because the program attempted to perform an action
it should not have (e.g., read outside its memory segments).
The OS terminates the program as a result.

• Silent Data Corruption (SDC): A mismatch appears be-
tween the outputs of a program’s faulty execution and error-
free execution of the same program.

• Benign Faults: Program output matches that of the error-
free execution even though a fault occurred during its ex-
ecution. This fact means either the fault was masked or
overwritten by the program.

• SDC Probability: We refer to the SDC probability as the
probability of an SDC given that the fault was activated –
other work uses a similar definition [15, 22, 32, 41, 51, 56].

• Static Instruction: The instruction in the program code.
• Dynamic Instruction: An instance of static instruction
that is executed by the CPU in a program execution.

2.3 LLVM Compiler

We perform the program analysis, FI experiments, and the tool
implementation based on the LLVM compiler [30]. Our choice of
LLVM is motivated by three reasons. First, LLVM uses a typed
intermediate representation (IR) that can easily represent source-
level constructs. In particular, it preserves the names of variables
and functions, which makes source mapping feasible. This feature
allows us to perform a fine-grained analysis of which program

Peppa-X: Finding Program Test Inputs to Bound Silent Data Corruption Vulnerability in HPC Applications SC ’21, November 14–19, 2021, St. Louis, MO, USA

locations cause the specific failures by mapping the error sites
back to the source code. Secondly, LLVM IR is a platform-neutral
representation that abstracts away low-level assembly language and
hardware details. This feature greatly aids in porting our analysis
to various architectures; it also simplifies the handling of different
cases of assembly language formats. Finally, LLVM IR has been
accurate for doing FI studies [46, 51], and a set of fault injectors
for LLVM [3, 33, 47, 51] already exists. Several studies in the area
of resilience also utilize the LLVM infrastructure [3, 15, 22, 28, 32].
Therefore, in this paper, we mean an instruction at the LLVM IR
level whenwe say instruction. However, ourmethodology is general
rather than tied to LLVM.

2.4 Genetic Algorithm

Genetic algorithm (GA) [24] is a meta-heuristic search algorithm in-
spired by natural evolution. The algorithm starts with an initial set
of candidate solutions, which are collectively called the population.
Then, a fitness function that computes the fitness score of a candi-
date drives forward the algorithm. The fitness score considers how
good the candidate is at solving the problem. At each phase, the
algorithm chooses some candidate solutions from the population
for recombination operations. There are two types of recombination
operations — crossover and mutation. Crossover tends to narrow the
search and move toward an optimal solution. Two randomly chosen
candidates get exchanged in the crossover operation to generate
a better solution from a good one. By comparison, mutation only
randomly selects one candidate. It flips a bit or an entity in the
candidate solution, which expands the search exploration. In gen-
eral, recombination operations give rise to new, better-performing
candidates, which contribute to population growth. In contrast,
members that have poor fitness scores are gradually eliminated.
Each such process is called a generation and is repeated until either
a population member has the desired fitness score (hence a solution
is found) or the algorithm terminates after the time threshold.

3 INITIAL FAULT INJECTION STUDY

In this section, we design experiments to show how the overall SDC
probability of a program correlates to program input, code coverage,
and per-instruction SDC probability, and discuss the implications
of the observations.

Table 1: Characteristics of Benchmarks

Benchmark Suite/Author Description No. of Static In-

structions

Pathfinder Rodinia Use dynamic programming to find a path
on a 2-D grid

372

Needle Rodinia A nonlinear global optimization method
for DNA sequence alignments

1069

Particlefilter Rodinia Statistical estimator of the location of a
target object given noisy measurements
of that target’s location in a Bayesian
framework

1869

CoMD Mantevo Molecular dynamics algorithms and
workloads

11457

Hpccg Mantevo A simple conjugate gradient benchmark
code for a 3D chimney domain on an ar-
bitrary number of processors

1975

Xsbench CESAR A mini-app representing a key computa-
tional kernel of the Monte Carlo neutron-
ics application

2366

FFT SPLASH-2 1D fast Fourier transform using six-step
FFT method

2138

3.1 Experiment Setup

3.1.1 Benchmarks. We use seven applications from four standard
benchmark suites for this study. We search from recent works in the
area of HPC resilience [4, 29, 36, 40, 46, 57], and choose applications
based on two criteria: (1) Compatibility with our toolset (i.e., we can
compile them into LLVM IR to work with our fault injector); and (2)
Ability to generate diverse inputs for our experiments. For the latter
criteria, we choose applications that take numeric values as their
program inputs rather than binary files or files of unknown formats
for the ease of input generations. As a result, seven benchmarks
meet the criteria, they are listed in Table 1. These benchmarks are
frequently used in HPC resilience studies, and we consider them as
representative applications in HPC domains.

3.1.2 Input Generation. Since all the chosen benchmarks take nu-
merical values as their inputs, we randomly generate values and
preserve the useful ones to run the benchmark programs. The se-
lection of the generated inputs performs on two rules. First, the
input should not lead to any reported errors or exceptions that halt
the program execution, as the error-introducing input may not rep-
resent the ordinary application behavior in production. Second, the
number of dynamically executed instructions by the input should
not exceed 40 billion, as such input can make the experiment time
reasonable. After the selection, we keep 30 random inputs for each
benchmark to perform the initial FI study. The average number of
executed instructions per input is around 4.43 billion, which is in
line with what has been used in prior works [32, 38?].

3.1.3 Fault Injection Tool. We use LLVM Fault Injector (LLFI) [51]
to perform FI experiments. LLFI has been accurate in studying
SDCs [46, 51]. As we only consider transient errors in the comput-
ing components, we use LLFI to inject single bit flips into a random
instruction’s return value. We consider single bit flips since it is
the de-facto fault model for simulating transient faults in the litera-
ture [1, 15, 20, 23, 38?]. Despite the concerns about the usefulness
of using single-bit flip faults for FI to model soft errors [9], a recent
study [47] has shown that there is little difference in SDC probabili-
ties between the single and multiple bit flips at the application level.
Therefore, we adopt single bit flips in our SDC-related evaluation.

3.1.4 FI Methodology. To measure the overall SDC probability
of a program, we inject 1,000 random faults to each benchmark
for each input. To derive the per-instruction SDC probabilities of
programs, we inject 100 random faults to each static instruction of
each benchmark on each input in order to balance our experiment
time. Our FI measurement yields an error bar from 0.26% to 3.10%
for the 95% confidence intervals. This error range is comparable
with other related works [15, 17, 20, 32, 46].

3.2 Results and Observations

After the FI experiments with random inputs, we measure the
overall SDC probabilities of each benchmark. Then, we examine
the variance of code coverage and per-instruction SDC probabilities
against different inputs.

3.2.1 Overall SDC Probability. Figure 1 compares the overall SDC
probability of each benchmark with the 30 random inputs. Each
blue bar represents the range of SDC probability. The slim red mark

SC ’21, November 14–19, 2021, St. Louis, MO, USA Md Hasanur Rahman, Aabid Shamji, Shengjian Guo, and Guanpeng Li

Figure 1: Range of Overall Program SDC Probability across

Multiple Inputs; Red marks indicate SDC Probability mea-

sured from default reference inputs

in each blue bar indicates the SDC probability measured with the
provided test inputs from the benchmark suite or existing works’
dataset [17, 32, 46]. We call such input the default reference input
of the benchmark. As seen, the bottom and top bounds of each
blue bar vary in a wide range and the range is highly application-
dependent. For example, in Hpccg, the range spans from 36.75% to
48.20%, whereas it is only from 9.55% to 12.58% in CoMD. Note these
ranges are observed based on the random inputs. The ranges are
even more expansive when running the benchmarks with the SDC-
bound inputs found by Peppa-X. We will show this later in Section 5.
The reason why a program SDC probability changes under different
inputs is that running different inputs may change the data-flow
and control-flow in program executions. The changed execution
flows consequently lead faulty values (originated from a single bit
flip) to go through different combinations of program regions where
masking (or propagation) effects are different. Thus, program input
changes may result in different program SDC probabilities. Similar
observations have been made in [13, 16, 32]

We also observe that the red marks are all in the lower half
of the blue bars. For example, the highest SDC probability with
the random inputs is 5.50% in Xsbench, whereas it is only 1.17%
with its default reference input. We observe similar situations in
other benchmarks too. This observation implies that the default
reference inputs cannot sufficiently expose the SDC vulnerabilities
in software programs. Even worse, there are no existing dedicated
test inputs for resilience evaluation purposes. The default reference
inputs are more for the performance assessment or functionality
testing rather than for resilience evaluation.

3.2.2 Code Coverage and SDC Vulnerability. Finding test inputs
that exhibit software bugs has been studied for a long time in
software engineering research [25]. Researchers use code coverage
as ametric to evaluatewhether the test inputs will likely revealmore
software bugs [26, 27]. While studies have shown code coverage
can effectively guide the search of bug-triggering program inputs
that expose software bugs, it is unclear whether code coverage can
help exploit hardware fault vulnerability.

To answer the question, we profile the code coverage (based on
static instructions) on running the random inputs for each bench-
mark and then compare the coverage data with the program SDC

probabilities of the inputs. Table 2 shows Spearman’s ranking corre-
lation coefficient between code coverage and program SDC proba-
bility regarding the inputs in each benchmark. As seen, the correla-
tion coefficients are notably low, with an average value of only 0.01.
This result proves that code coverage alone is unlikely to guide an
efficient search of inputs to exploit SDC vulnerability in programs.

Table 2: Correlation between Code Coverage and Program

SDC Probability across Different Inputs

Pathfinder Needle Particlefilter CoMD Hpccg Xsbench FFT

0.00 -0.29 0.17 -0.18 0.00 0.38 0.00

3.2.3 Per-Instruction SDC Probabilities. We now examine the per-
instruction SDC probabilities across multiple inputs. We use per-
instruction SDC probabilities as a proxy to the SDC sensitivity dis-
tribution in a program. Here the term instruction refers to static in-
struction of a program. Figure 2 shows the range of per-instruction
SDC probabilities across different inputs. For brevity, we use CoMD
as an example for illustration purposes. Due to the enormous static
instructions in the benchmarks, it is impractical to present the re-
sults of all instructions in the figure. Instead, we choose to sample
10 static instructions in CoMD for the illustration purposes.

Figure 2: Range of Per-Instruction SDC Probabilities in

CoMD across Multiple Inputs

Figure 2 shows that the per-instruction SDC probability differs
a lot. The range of the per-instruction SDC probability varies as
well. For example, Instruction ID 5037 in CoMD has the highest SDC
probability of 35.38%, whereas Instruction ID 4958 has no more than
5.66% SDC probability across all inputs.

We notice that some instructions in a program are always vul-
nerable to SDCs regardless how inputs are changed and vice versa.
For example, Instruction ID 5037 in CoMD always produces a higher
SDC probability over different inputs than other program instruc-
tions. Similar situations can be observed in the rest of the bench-
marks. Here we consider this finding is crucial because it leads us
to hypothesize that the ranking of each instruction’s SDC vulner-
ability, or the SDC sensitivity distribution, is stable in a program
regardless of the changing inputs.

To further investigate the SDC sensitivity distribution against
changing inputs, we measure the Spearman’s Ranking coefficient
for each benchmark when comparing the ranking of per-instruction
SDC probability among different inputs. Given an input for a bench-
mark, we measure the SDC probability of every instruction, then

Peppa-X: Finding Program Test Inputs to Bound Silent Data Corruption Vulnerability in HPC Applications SC ’21, November 14–19, 2021, St. Louis, MO, USA

Table 3: Correlation Coefficient between the Rankings of

Per-Instruction SDC Probabilities with Different Inputs

Pathfinder Needle Particlefilter CoMD Hpccg Xsbench FFT

0.92 0.79 0.90 0.90 0.96 0.59 0.77

rank instructions by the SDC probabilities. So there is a rank list
of instructions regarding an input. We then compute Spearman’s
Ranking correlation pairwise between all the rank lists, and take
an average of them as the coefficient for the benchmark. Table 3
shows the results. A higher value of the coefficient indicates a stable
ranking of the per-instruction SDC probability. To be specific, the
instruction with higher per-instruction SDC probability retains its
high value relative to that of other instructions on the changing
inputs.

That is, no matter how program input changes, the SDC sensitivity
distribution of the program tends to remain stationary. This obser-
vation allows us to design a search technique that finds proper
inputs to explore more vulnerable program regions based on the
distribution, thus obtaining higher program SDC probability.

4 METHODOLOGY

In this section, we first present the overall design of Peppa-X and
then explain the details in each core component.

4.1 Overall Design of Peppa-X

Figure 3 shows the overall workflow of Peppa-X. Users of Peppa-X
only need to provide the source code of the target program. Peppa-X
will automatically search and try to generate the best SDC-bound
input within the assigned time budget. The entire search process is
automatic without requiring any interventions from the user. We
have made Peppa-X publicly available1.

Pruning FI Space
(Static Analysis)

Program Source Code

Genetic Engine

Fitness Evaluation
(Dynamic Analysis)

Fitness S
core

Generated
Input

SDC
Scores

SDC-Bound Input

FI Simulation

FI Sites

Fuzzing for Small FI Input

Small FI Input

Analysis of SDC Sensitivity
Distribution

Dynamic Fuzzing for
SDC-Bound Input

1

2

3

4

5

Figure 3: Workflow of Peppa-X

Since the SDC sensitivity distribution in a program is stable
over different inputs, we design the search method that drives the
program execution towards exploring more vulnerable program
regions to maximize program SDC probability and generate the
SDC-bound input accordingly. We utilize Genetic Algorithm (GA)
1https://github.com/hasanur-rahman/Peppa-X

as the search method to make optimization decisions based on the
dynamic analysis feedback with the generated inputs. Note that
our technique does not tie to GA; other search-based optimization
algorithms can be adopted into our technique as well.

We have to address two main challenges in Peppa-X:

• (C1): In order to guide the exploration towards vulnerable
program regions, we need to identify the distribution of SDC
sensitivity in the program. A strawman method is to con-
duct extensive FI simulations for every program instruction.
However, this method is extremely time-consuming. For ex-
ample, in CoMD, it takes about 5030 hours to complete the FI
evaluation on the default reference input in order to derive
the SDC sensitivity distribution, as we observed in Section 3.

• (C2): To make optimization decisions during the dynamic
search, we have to know the program SDC probability of
each generated input relative to that of other inputs. Statis-
tical FIs can be used here to measure the SDC probability
with each input, and hence rank all the inputs. However, this
method is inevitably costly as thousands of FI trials need to
run for each input. Due to the vast input space, numerous
input candidates will be generated during the search; using
statistical FIs to evaluate candidates significantly slows down
the search progress.

To address (C1), we propose a set of pruning techniques based
on the static dataflow dependencies, thus reducing the required
FI trials for identifying the program SDC sensitivity distribution.
This step is shown in ➋ in Figure 3. Our pruning strategy leverages
program static dataflow analysis to group the instructions along
with the same static data dependency. The SDC probabilities of in-
structions in the same group share similar SDC sensitivity as errors
directly propagate through immediate data dependency. In this way,
Peppa-X performs only a handful of FI trials on the representative
instructions in each group to derive the program’s SDC sensitivity
distribution.

To further save time in FI evaluation, we strategically select an
input with a small workload in the FIs to speed up the evaluation.
We call such input a small FI input of the program. We fuzz the
target program starting from a limited workload range of inputs
until reaching a specified code coverage, hence achieving the small
FI input (➊). Recall that the SDC sensitivity distribution remains
stable over the inputs. Thereby, we use the obtained small FI input
in the FI simulations to derive SDC sensitivity distribution (➌).
These developed heuristics significantly speed up the process of
deriving SDC sensitivity distribution. The next step is to fuzz the
program using GA for SDC-bound inputs (➍). GA is responsible
for the input candidate generation and selection based on the SDC
vulnerability potentials.

To address (C2), we have to find a way to avoid using statistical
FI for estimating each generated candidate input during the GA
fuzz in ➍. In Peppa-X, we design a novel dynamic program analysis
technique that tracks the accumulated SDC vulnerability potentials
on the explored execution paths during the program execution
(➎). We compare the accumulated on-the-fly potential values on
executing inputs generated by the GA recombination operation.
The comparison winner directs GA to make optimization decisions.
This process prevents us from using the slow offline statistical FI

SC ’21, November 14–19, 2021, St. Louis, MO, USA Md Hasanur Rahman, Aabid Shamji, Shengjian Guo, and Guanpeng Li

evaluation for the inputs generated in the GA recombination. It
also incrementally steers the GA optimization search towards the
SDC-bound input in the given time budget.

4.2 Design Details

In this section, we explain the core steps in Figure 3 in details.

4.2.1 Fuzzing for Small FI Input ➊. This step aims to find an input
used in the FI evaluation to obtain the SDC sensitivity distribution.
One can use the default reference input in each benchmark suite to
compute the distribution. However, as mentioned, it is usually for
performance testing, and can be significantly slow when used in FI
runs. Thereby, we look for a new input with a small workload yet
provides enough code coverage for evaluating the SDC sensitivity
distribution. Instead of directly using the default reference input,
we collect the code coverage from running it. Then, we use the
coverage as the metric to find a new input from fuzzing since the
default input often exercises representative parts of a program.
In this way, the new input we find will cover the distribution of
representative program regions.

We start the procedure from a small numerical range that only
triggers a light computation workload in the target program. Then,
we randomly generate an input within the range, and track its code
coverage. If the new coverage meets the target coverage, we have
found a small FI input. Otherwise, we have to repeat the process by
increasing the numerical range until reaching the target coverage.
On average, our fast fuzzing procedure only needs about 3 seconds
to find a small FI input.

4.2.2 Static Analysis for Pruning FI Space ➋. In order to get the
SDC sensitivity distribution of a program, one can use statistical
FIs to evaluate the SDC probability of every static instruction in
the program. However, blindly injecting random faults to every
static instruction brings intolerable cost in practice. We observe
that most instructions in its static dataflow (e.g., the instructions
that have static data dependency) in a program share very similar
SDC probabilities except for certain types of instructions. Based on
this observation, we develop a heuristic that leverages static pro-
gram analysis to group the program instructions based on the data
dependencies. In each group, most instructions share similar SDC
probabilities, and we only need to conduct FIs for the representative
instructions and use them to approximate the SDC probabilities for
the rest of the instructions in the same group.

...
%168 = load i32* %k... ; ID1562; SDC: 0.8%
%169 = add nsw i32 %168, 1... ; ID1563; SDC: 0.4%
...
%171 = icmp eq i32 %169... ; ID1565; SDC: 100.0%
...

BB167

Figure 4: Code Example of Pruning FI Space in CoMD

The example in Figure 4 shows a basic block from the CoMD
code. There are three data-dependent instructions in the basic block,
namely ID1562, ID1563, and ID1565. We also measure the SDC prob-
ability of each instruction and annotate it in the figure. The three

instructions are within the same static data dependency; they are
in the same group based on our pruning method. We observe that
the per-instruction SDC probabilities are very similar between the
instructions ID1562 and ID1563 except for the ID1565 instruction
(CMP instruction). Therefore, we further divide the group into two
subgroups based on the similarity of per-instruction SDC probabili-
ties: one includes the former two, and the other subgroup has the
ID1565 instruction.

We find that a CMP instruction consistently differentiates the
SDC probability with previous data-dependent instructions and
separates a group of data-dependent instructions into subgroups.
We observe some other types of instructions have a similar situation:
they include all the logic operators (e.g., AND, OR, XOR, etc.), bit
manipulation instructions (e.g., TRUNC, SEXT, etc.), and pointer
operations. Therefore, in the example, we need to select either
the instruction ID1562 or ID1563 and the instruction ID1565 for FI
evaluation, pruning the FI space from 3 instructions to 2.

Table 4 shows the pruning ratios we obtain after applying our
pruning heuristic. The pruning ratio is calculated between the
number of pruned instructions and the number of all instructions.
As seen, the pruning ratio is application-specific, ranging from
25.49% in Pathfinder to 58.69% in Hpccg. The average pruning ratio
is 49.32% over all the seven benchmarks.

Table 4: FI-Space Pruning Ratio for All Benchmarks

Pathfinder Needle Particlefilter CoMD Hpccg Xsbench FFT Avg

25.49% 51.40% 46.35% 58.44% 58.69% 49.22% 55.64% 49.32%

4.2.3 Deriving SDC Scores with reduced FI Simulations ➌. After
the pruning, we conduct FIs on the program with the small FI input
to derive the program’s SDC sensitivity distribution. We inject
30 random faults over the pruned number of static instructions
and normalize the measured SDC probabilities. The normalized
measurement helps assign an SDC score for each static instruction,
indicating the SDC sensitivity relative to other instructions in the
program. Note that one can choose to inject more faults for each
instruction for a more accurate measurement as [1, 28, 32] do in
their studies. However, this step aims to identify the relative ranking
of per-instruction SDC probability of the program and estimate the
SDC sensitivity distribution. Therefore, we choose to reduce the
number of FI trials for the sake of performance.

Table 5: Time for the Analysis of SDC Sensitivity Distribu-

tion

Time (hrs) Pathfinder Needle Particlefilter CoMD Hpccg Xsbench FFT Avg.

With

Heuristics

0.08 0.33 0.80 59.67 1.08 10.84 0.33 10.45

Without

Heuristics

0.13 20.76 2.78 5029.76 775.11 58.71 1.14 841.20

We now show the efficiency and the effectiveness of our prun-
ing heuristics. Table 5 displays the time taken to obtain the SDC
sensitivity distribution with and without the proposed heuristics in
➊ and ➋. With our heuristics, the average analysis time decreases
from 841.20 hours to 10.45 hours, exhibiting a speed-up of about 84
times.

Peppa-X: Finding Program Test Inputs to Bound Silent Data Corruption Vulnerability in HPC Applications SC ’21, November 14–19, 2021, St. Louis, MO, USA

4.2.4 Fuzzing with Genetic Engine ➍. After getting a program’s
SDC sensitivity distribution, we feed this information to the Ge-
netic Engine, an input search engine driven by GA. Recap that the
SDC sensitivity distribution is stable over different program inputs
(Section 3); thereby, the genetic engine can search for the execution
based on the obtained SDC sensitivity distribution. We design a
fitness function inside the genetic engine that continuously reports
the accumulated SDC vulnerability in each explored program ex-
ecution. Next, following the heuristics proposed for GA in [24],
we choose 0.4 and 0.05 for the mutation rate and crossover rate
respectively. A program input consists of a set of input arguments.
The mutation operation makes a slight value change to one of the
arguments each time. The range of the value change is between
-10% and +10% of the current argument value. In each mutation,
we randomize a value within the range and add it to the original
value. For the crossover operation, we randomly select two pro-
gram inputs generated in the current GA generation, and swap one
argument value between both inputs. Finally, we adopt the roulette
selection algorithm [24] for the GA selection.

4.2.5 Dynamic Analysis for Guiding the Search ➎. For GA to make
optimization decisions during the search, the fitness function as-
sesses the GA-generated inputs. To avoid statistical FI for every
candidate input, we track program execution with the input and
accumulate the SDC vulnerability on the executed program path to
estimate an alternative SDC vulnerability potential.

𝑃overall = 𝑁SDC/𝑁total (1)

= (
𝑛∑
𝑖=1

𝑃𝑖 ∗ 𝑁𝑖)/𝑁total =

𝑛∑
𝑖=1

𝑃𝑖 ∗ (𝑁𝑖/𝑁total) (2)

Equation 1 shows the overall SDC probability calculation in
statistical FIs. 𝑃overall is the overall SDC probability of a program,
𝑁SDC represents the number of trials observed as SDCs, and𝑁total is
the total number of trials sampled in the FI experiment. Equation 2
is an equivalent form of Equation 1, where we introduce two terms
𝑃𝑖 (per-instruction SDC probability) and 𝑁𝑖 (the execution count
of a static instruction during a dynamic program run). Since the
relative ranking of 𝑃𝑖 is stable over different inputs, we can use the
SDC scores attached with static instructions (➌) to approximate
the respective 𝑃𝑖 in the equation. Note that both 𝑁𝑖 and 𝑁total rely
on the specific input; we need to measure them at runtime. We
track the executed times of each static instruction at runtime, then
accumulate them to get 𝑁𝑖/𝑁total in each program execution with a
candidate input. We use the accumulated value as the fitness score
for the candidate input since the fitness score is an alternative to
the program’s SDC probability on that input. Finally, GA uses the
fitness score to make optimization decisions — the candidate input
with a higher fitness score will survive. It is worth mentioning that
we only need to execute the program once on a candidate input
in this dynamic analysis. In contrast, in statistical FIs, one need
to execute the program once per FI trial while there are always
thousands of FI trials to complete the SDC probability measurement
for a candidate input [17, 32, 46]. Therefore, the dynamic fitness
score calculation significantly speeds up the search process for
SDC-bound input.

5 EVALUATION OF PEPPA-X

In this section, we first examine the bound of program SDC proba-
bility depicted by the SDC-bound inputs from Peppa-X. Then we
evaluate the performance of running Peppa-X.

5.1 Bounding SDC Probability of Programs

We compare the program SDC probabilities bounded by the gener-
ated inputs from Peppa-X and the baseline technique, respectively,
given the same search time. Our baseline method is the random
input generation method with statistical FIs as it is the only cur-
rently available approach that searches for the SDC-bound input in
a program. In both techniques, we inject 1,000 faults to the target
program when it is required to be evaluated for program SDC prob-
ability. Our FI measurements are in line with many prior works in
the area [15, 17, 22, 32, 46, 51?]. Note that we do not need to con-
duct any FI evaluation for the program SDC probability in Peppa-X
until the end of the search once an SDC-bound input is reported
(Section 4.2). Whereas in the baseline method, FI measurement is
required for each generated input in the search to know whether
or not the input can lead to a higher program SDC probability.

Figure 5 shows the results.We draw the highest SDC probabilities
in each benchmark bounded by the inputs from both techniques,
given time budgets of 50, 100, 200, 500, and 1,000 generations. As
seen, Peppa-X can find an input that brings higher program SDC
probability in most of cases. For example, at the time budget of
50 generations, Peppa-X can find an input that leads to a program
SDC probability of 37.9% in Xsbench, whereas it is merely 0.7% in
the baseline. Similar situations happen in Pathfinder and Needle,
where Peppa-X identifies a program SDC probability of 39.2% and
7.7% respectively at 200 generations while the baseline can only
find 25.0% and 1.1%.

We observe that in some benchmarks, such as Hpccg, Particle-
filter, and FFT, the baseline could perform as good as Peppa-X and
finds inputs that lead to comparable SDC probabilities. We use Fig-
ure 6 to investigate the reason. The heat map draws the distribution
of the program SDC probabilities in the input space of a program.
For illustration purposes, we present the heat maps of Hpccg and
Pathfinder. Each dot in the heat map represents an input, and the
color of the dot denotes the program SDC probability of running
the benchmark with the input. All the observed SDC probabilities
are normalized to between 0 and 1, the darker color the higher
SDC probability. The two sub-figures on the top row display the
overall and the zoom-in situations of Hpccg, where we can find that
most inputs are dark-colored. This distribution means a randomly
sampled input may easily bring a high SDC probability. On average,
a randomly sampled input in the space will lead to a program SDC
probability that is above 96th percentile in Hpccg measurement.
Thereby, the baseline approach, which randomly samples inputs,
tends to perform as good as Peppa-X. We make similar observations
in Particlefilter and FFT. In contrast, we draw two sub-figures at the
bottom row in Figure 6 for Pathfinder benchmark in which Peppa-X
performs much better. The two sub-figures significantly differ from
those of Hpccg, where most dots have very light colors – on average,
a randomly sampled input will lead to a program SDC probability
that is only about 2nd percentile, making it extremely hard for the
baseline to identify those SDC-bound inputs in Pathfinder.

SC ’21, November 14–19, 2021, St. Louis, MO, USA Md Hasanur Rahman, Aabid Shamji, Shengjian Guo, and Guanpeng Li

(a) Pathfinder (b) Needle (c) Particlefilter (d) CoMD

(e) Hpccg (f) Xsbench (g) FFT

Figure 5: The Result of Bounding SDC Probability (Y-Axis: SDC Probability, X-Axis: No. of Generations in GA)

(a) Hpccg - Overall (b) Hpccg - Zoom In

(c) Pathfinder - Overall (d) Pathfinder - Zoom In

Figure 6: HeatMaps of SDCVulnerability Distribution in the

Input Space of Hpccg and Pathfinder (Normalized between

0 and 1.)

Note that the program SDC probability distribution in the input
space depends on the application characteristics – it reflects how
data-flow and control-flow (and hence error propagation) in the pro-
gram execution are sensitive to input changes. Peppa-X performs
much better when the inputs that lead to higher SDC probabilities
are sparsely distributed (and hard to find) in the input space.

Further, we observe that in all the benchmarks, the SDC-bound
inputs found by Peppa-X always outperform the default reference
inputs provided in the benchmark suites (Figure 1) within any of
the time budgets, showing that the default reference inputs often
lead to over-optimistic SDC estimates and hence are not suitable
for the evaluations of program SDC resiliency.

Next, we examine the program SDC probability the baseline
method can reach if given 5x more time for the search. We compare
the 5x-time result with the result of Peppa-X at 200 generations.
The reason for using 200 generations as the cut-off time budget is
that we observe that the program SDC probabilities mostly saturate
after 200 generations. The average time taken for 200 generations
in Peppa-X is nearly 40 hours, now we extend the baseline search
by 5 times for each benchmark, to an average of 200-hour search
for the comparison.

Figure 7 shows the result. As can be seen, the results are quite
consistent with our prior evaluation in Figure 5. That is, if the base-
line under-performs at 200 generations of Peppa-X, it still cannot
find the SDC-bound inputs even given 5x more search time. In fact,
the SDC probabilities bounded by the baseline in the benchmarks
such as Xsbench are still far lower, showing Peppa-X is highly
efficient in finding SDC-bound inputs.

Finally, we run Peppa-X for another 4,000 generations in the
search and reach 5,000 generations for all the benchmarks. We
observe that the search often converges within the first 200 gen-
erations except for Particlefilter (bumped up at 754 generations),
indicating a saturation after 200 generations in most cases.

5.2 Performance

In this section, we show the performance evaluation in Peppa-X
and the baseline technique. Then we present the breakdown time
measurement in each step. To recap, Peppa-X consists of three parts
that take time. They are (1) analysis of SDC sensitivity distribution,
(2) dynamic fuzzing with GA, and (3) FI evaluation for SDC-bound

Peppa-X: Finding Program Test Inputs to Bound Silent Data Corruption Vulnerability in HPC Applications SC ’21, November 14–19, 2021, St. Louis, MO, USA

Figure 7: Program SDC Probability Bounded by Peppa-X at

200 Generations and Baseline with 5x More Search Time

input reported at the end of the search. The baseline contains FI
evaluations for every randomly generated inputs. The FI evaluation
for a given input in both Peppa-X and the baseline consists of
instrumentation, profiling, and 1000-trial FIs using LLFI [51].

Note that our technique can be easily parallelized to improve
the performance of the search, so does the baseline. However, for a
fair comparison, we report the performance of both Peppa-X and
the baseline measured without any parallelization.

Figure 8: Total Time Taken by Peppa-X at Different Genera-

tions

Figure 8 shows the average time taken to complete Peppa-X at
50, 100, 200 generations over the seven benchmarks. As seen, the
analysis of SDC sensitivity distribution is an one-time and fixed
cost, and the total time of running Peppa-X is proportional to the
number of generations in GA. Note that in Peppa-X, it only requires
FI evaluation for the SDC-bound input reported at the end of the
search. Thereby, it is a fixed cost too included in the total time.

Table 6: Performance Breakdown in Peppa-X and baseline

Time (s) Peppa-X Per-Input Evaluation Baseline Per-Input Evaluation

Pathfinder 1.06 9326.91
Needle 1.02 7497.40

Particlefilter 0.45 865.27
CoMD 3.99 110218.25
HPCCG 2.09 45325.39
Xsbench 18.63 222248.48

FFT 0.36 80.19
Average 3.94 56508.84

As a point of comparison, we show the time taken for assessing
the SDC vulnerability of an input in Peppa-X and the baseline. To

recap, Peppa-X leverages the dynamic analysis and fitness score to
estimate the SDC vulnerability of an input relative to that of other
inputs during the search (Section 4). In contrast, the baseline uses
only FI evaluation to measure the program SDC probability with
the input and hence to update the upper bound of the measurement.
Table 6 shows the time taken for both Peppa-X and the baseline
in the evaluation of an input. As can be seen, it takes only a small
fraction of the time by Peppa-X compared with the baseline. On
average, Peppa-X has a speedup of more than 4 orders of magnitude
compared with the baseline in the evaluation of one input, allowing
many more inputs to be assessed in Peppa-X given same amount
of search time.

6 CASE STUDY: STRESS TESTING SELECTIVE

INSTRUCTION DUPLICATION

In this section, we demonstrate the usefulness of our technique
in stress testing a popular SDC protection technique – selective
instruction duplication. The protection technique has been pro-
posed and used in many other studies in the area of HPC resiliency,
and is believed to be cost-effective in protecting programs from
SDCs caused by transient hardware faults [1, 18, 22, 28, 29]. The
selective instruction duplication relies on the assumption that only
a small amount of instructions in a program are responsible for
the majority of the program SDC probability. So develpers can
gain a high SDC coverage by protecting those specific instructions
with low overhead. In the selection, the technique formulates the
SDC coverage and protection overhead as a classical 0-1 knapsack
optimization problem [39].

For a given allowance of performance overhead incurred by the
protection, the protection technique identifies the best set of in-
structions for the protection in order to maximize the SDC coverage.
The protection is added through duplicating the selected instruc-
tions at compile-time. So once a transient hardware fault occurs
at any of the protected instructions at runtime, the error will be
detected by matching the computation results between the original
and the duplicated copy of the instruction. In the optimization of a
knapsack setting, the cost refers to the performance overhead of an
instruction if duplicated, whereas the benefit is the SDC coverage
as the result of duplicating the instruction.

In order to get the SDC coverage of every instruction, the SDC
probability of the instruction needs to be measured. Therefore, in
the selective instruction duplication technique, one needs to first
evaluate the SDC probability of every instruction before making
the optimization decisions in the knapsack problem. In this step,
FIs are used, and hence an input needs to be provided for the FIs.
In the past, researchers have been using the default reference input
of a program when deploying selective instruction duplication and
deriving an expected SDC coverage from the protection [1, 18, 22,
28]. However, we observe that the protection is often compromised
if we use the SDC-bound inputs found by Peppa-X to stress test the
protected programs, and hence the actual SDC coverages are often
significantly lower than the expected ones.

Our stress-test experiment is conducted as follows: We adopt the
selective instruction duplication technique proposed in [1, 18, 28],
evaluate the per-instruction SDC probabilities using the default
reference input in each benchmark (as all the existing works did),

SC ’21, November 14–19, 2021, St. Louis, MO, USA Md Hasanur Rahman, Aabid Shamji, Shengjian Guo, and Guanpeng Li

(a) 30% Protection Level (b) 50% Protection Level (c) 70% Protection Level

Figure 9: Using Peppa-X to Stress Test Selective Protection Techniques (Y-Axis: SDC Coverage; X-Axis: Benchmarks)

then run the knapsack optimization algorithm to select a subset of
instructions for the protections at 30%, 50%, and 70% levels of perfor-
mance overhead respectively. We then measure the SDC coverages
provided at each protection level via FIs – this is the expected SDC
coverages by the protection at runtime and hence developers make
their reliability decisions based on the information [1, 18, 22, 28, 29].
Finally, we execute the protected binary of the program with the
SDC-bound input found by Peppa-X and examine the protection
with FIs. We then compare the observed SDC coverages with the
expected ones.

Figure 9 shows the stress-test results. On average, the expected
SDC coverages are 85.23%, 96.63%, and 99.18% at 30%, 50% and 70%
protection levels respectively. In contrast, they are only 33.52%,
38.02%, and 38.28% when stress-tested with the SDC-bound inputs.
As seen, the SDC coverages tested with SDC-bound inputs are
dramatically lower than the expected ones at all protection levels.
For example, at 70% protection level, on average the actual coverage
is measured 2.59 times lower that the expected coverage.

The exceptions are CoMD and FFT, where the SDC coverages
tested with SDC-bound input are only slightly lower than the ex-
pected ones at all protection levels, but still, the expected coverages
cannot be reached when stress-tested with their SDC-bound inputs.
The most likely reason behind this is that when deciding SDC cov-
erages, besides a stationary 𝑃𝑖 in Eq 2, the dynamic footprints of
instructions, 𝑁𝑖/𝑁total in Eq 2 in CoMD and FFT, may also have
relatively smaller variances across inputs. Thereby, the Knapsack
algorithm selects the subsets of instructions that are more globally
optimal, protecting the instructions even if there are more SDC
vulnerabilities revealed by the SDC-bound inputs in the program
executions. We refer the improvement of selective instruction du-
plication technique to our future work.

Overall, our results in the case study show that developers likely
underestimate the failure rates of their applications when using
current selective instruction duplication techniques for protections.
In resilience, being conservative is important in order to ensure the
systems do not fail unexpectedly. Therefore, before deployment,
SDC protection techniques shall be stress-tested for a conservative
estimate, for example, with program SDC-bound inputs which can
be efficiently found by Peppa-X.

7 DISCUSSION

We first discuss two other potential use cases of Peppa-X, then
present the threats to validity in this study.

7.1 Other Potential Use Cases

7.1.1 Data Generation in Modeling Error Propagation. There ex-
ists a large body of works that characterized and modeled error
propagation in software programs. These studies rely on FI ex-
periments to manifest SDCs in programs before investigating the
individual propagation cases [3, 19, 21, 32, 36]. Recent studies use
FIs to generate a large amount of SDC campaigns, then feed the
corpus to machine learning models in order to model error propaga-
tion [20, 29, 41]. Typically, large-scale FI experiments are necessary
for these studies. The sets of SDC-bound inputs from Peppa-X can
complement existing studies to increase the FI efficiency since those
inputs can reveal significantly more SDCs. For example, in Xsbench,
the probability of generating a FI campaign of SDC by a statistical
FI technique is around 32x lower than Peppa-X. That is, Peppa-X
may need merely 1/32 time to generate the same amount of corpus
compared with the statistical FI methods, allowing more efficient
data collection in their studies.

7.1.2 Integration into Software Development Cycle. In HPC and
cloud software development, developers need to assess their appli-
cations for SDC resiliency before release. The code of applications
needs to be frequently updated due to various reasons such as bug
fixing, code refactoring etc after the initial release. Unfortunately,
the SDC probability of the program need to be re-evaluated every
time the code is updated since it is program-dependent. To this end,
a fast and efficient test case generation technique is needed in order
to save time in the evaluation. In an agile software development
cycle, one can quickly run Peppa-X for generating SDC-bound in-
put for a conservative evaluation of SDC probability upon the code
changes. Moreover, the widely-used continuous integration (CI)
technology can seamlessly leverage Peppa-X as a backend compiler
toolchain to run automatically upon code commits.

7.2 Threats To Validity

7.2.1 Benchmarks. As stated in Section 3, we consider benchmarks
used in recent publications in the related studies. Unlike perfor-
mance evaluation, there is no standard benchmark suite for re-
liability evaluation. Our results may be specific to the choice of

Peppa-X: Finding Program Test Inputs to Bound Silent Data Corruption Vulnerability in HPC Applications SC ’21, November 14–19, 2021, St. Louis, MO, USA

benchmarks, though we have not observed this to be the case. Other
work in this domain makes similar decisions [17, 20, 32, 36, 38].

7.2.2 Fault Injection Methodology. We use LLFI, a fault injector
that works at the LLVM IR level, to inject single-bit flips. While this
method is accurate for estimating SDC probabilities of programs [46,
51], it remains an open question of how accurate it is for other
failure types. That said, our focus in this paper is SDCs, and so this
is an appropriate choice for us.

7.2.3 Input Format. As mentioned in Section 3 , our evaluation
is based on the benchmarks that take numerical inputs for the
ease of generating a large amount of diverse inputs. Other related
works in the area of HPC resilience made the same choice when
generating diverse inputs [12, 13, 16, 32]. We believe that there is
no fundamental limitation in our technique in terms of working
with other types of input formats. All the program inputs must be
converted to its numerical counterparts before it can be computed
in the program execution, and our technique tracks the control-flow
and data-flow changes in the program execution when inputs are
changed (Section 4). Therefore, we believe that our technique can
be extended to work with the programs that take a different initial
format of inputs, if the formats are known or properly documented
in the benchmark suites.

8 RELATEDWORK

SDC Evaluation and Application Resiliency. There have been many
works investigating the SDC resiliency of applications. Feng et
al. [15] proposed Shoestring, a model of error propagation that iden-
tifies SDC-prone instructions in programs. Ashraf et al. [3] designed
a framework that analyzes error propagation in MPI applications.
Hari et al. [23] developed a pruning technique that evaluates the
SDC resiliency of programs. Li et al. [36] proposed a FI sampling
technique that obtains an approximate fault-tolerance threshold
value for FI sites in HPC programs. While these works advanced
the knowledge of application-level SDC resiliency, they focused on
one or very few inputs in target programs. As we show in this work,
there is often a significant variance in programs’ SDC resiliency
and error propagation characteristics with different inputs. Hence,
programs need to be evaluated and studied across multiple inputs.

Other researchers have investigated program error detection and
protection techniques. Laguna et al. [29] trained machine learning
models to select and protect vulnerable instructions in programs.
Kalra et al. [28] developed a compiler-based technique that selec-
tively protects GPU programs in order to reduce SDCs. Anwer et
al. [1] extended the Trident technique to GPU programs and pro-
tected error-prone instructions. Li et al. [34] built techniques to
detect SDCs in HPC applications equipped with lossy compres-
sion. While these techniques can mitigate SDCs in programs, their
techniques may not be optimized for programs’ multiple inputs,
especially for the inputs, such as SDC-bound inputs, that expose
higher program SDC probabilities (as we show in our stress tests).

Multiple Inputs and Resiliency Characterization. In recent years,
there have been studies investigating how program inputs may af-
fect error propagation and resiliency evaluations. Di Leo et al. [13]
characterized the relationship between program workloads and the
failure distribution model. Folkesson et al. [16] analyzed different

workloads and program failure rates. Li et al. [32] modeled input-
dependent error propagation in programs. Yang et al. [55] proposed
SUGAR to speed up the GPU evaluation process via input sizing.
Mahmoud et al. [38] adopted software testing methods to evaluate
program’s SDC resiliency by prioritizing test cases based on PC
coverage. While those works have presented insightful observa-
tions and characterizations in the program resiliency of multiple
inputs, they rarely provide means to identify program test cases,
such as SDC-bound inputs, to estimate the upper bound of program
SDC probability. Our work is the first one that proposes an effi-
cient search technique to find program test inputs that can be in
conservative SDC evaluations.

Software Fuzzing. Grey-box fuzz testing, or fuzzing for short, has
proved to be highly effective in software testing and vulnerability
exploitation [6–8, 26, 35, 45]. Recent advances from industry [25, 27]
also boost the wide applications of fuzzing to various domains like
performance evaluation [50, 52], game deep state exploration [2],
side-channel detection [43], voice assistant semantic fuzzing [58],
database management system testing [60], etc. These methods,
however, heavily rely on the coverage-guided search, which inher-
ently lacks practicability in finding SDC vulnerability. Also, many
existing fuzzers primarily focus on the abnormal symptoms in pro-
gram execution, and none could track the silent but dangerous
SDC vulnerability. Instead, Peppa-X develops an innovative fitness
feedback-based search against the accumulated SDC potentials.
Furthermore, the general design of Peppa-X can port to scenarios
where black-box behavioral fuzzing may play an important role.

9 CONCLUSION

To conclude, we propose Peppa-X, which efficiently identifies the
test inputs that estimate the bound of program SDC resiliency. The
key insight of Peppa-X is that the SDC sensitivity distribution in a
program often remains stationary across input space. Thereby, we
can guide the search of SDC-bound inputs by the sampled distri-
bution. Our evaluation shows that Peppa-X can identify the SDC-
bound input of a program that existing methods cannot find even
with 5x more search time.

REFERENCES

[1] Abdul Rehman Anwer, Guanpeng Li, Karthik Pattabiraman, Michael Sullivan,
Timothy Tsai, and Siva Kumar Sastry Hari. Gpu-trident: efficient modeling of
error propagation in gpu programs. In SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1–15. IEEE,
2020.

[2] Cornelius Aschermann, Sergej Schumilo, Ali Abbasi, and Thorsten Holz. Ijon:
Exploring deep state spaces via fuzzing. In 2020 IEEE Symposium on Security and
Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020, pages 1597–1612. IEEE,
2020.

[3] Rizwan A Ashraf, Roberto Gioiosa, Gokcen Kestor, Ronald F DeMara, Chen-Yong
Cher, and Pradip Bose. Understanding the propagation of transient errors in hpc
applications. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, page 72. ACM, 2015.

[4] Chao Chen, Greg Eisenhauer, and Santosh Pande. Near-zero downtime recovery
from transient-error-induced crashes. arXiv preprint arXiv:2103.05185, 2021.

[5] Chao Chen, Greg Eisenhauer, Matthew Wolf, and Santosh Pande. Ladr: Low-cost
application-level detector for reducing silent output corruptions. In Proceedings
of the 27th International Symposium on High-Performance Parallel and Distributed
Computing, pages 156–167, 2018.

[6] Hongxu Chen, Shengjian Guo, Yinxing Xue, Yulei Sui, Cen Zhang, Yuekang Li,
Haijun Wang, and Yang Liu. MUZZ: thread-aware grey-box fuzzing for effective
bug hunting in multithreaded programs. In Srdjan Capkun and Franziska Roesner,
editors, 29th USENIX Security Symposium, USENIX Security 2020, August 12-14,
2020, pages 2325–2342. USENIX Association, 2020.

SC ’21, November 14–19, 2021, St. Louis, MO, USA Md Hasanur Rahman, Aabid Shamji, Shengjian Guo, and Guanpeng Li

[7] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei Xie, Xiuheng Wu,
and Yang Liu. Hawkeye: Towards a desired directed grey-box fuzzer. In David Lie,
Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages 2095–2108. ACM, 2018.

[8] Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong Zhou, Yulong Zhang,
Tao Wei, and Long Lu. SAVIOR: towards bug-driven hybrid testing. In 2020 IEEE
Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA, May 18-21,
2020, pages 1580–1596. IEEE, 2020.

[9] Hyungmin Cho, Shahrzad Mirkhani, Chen-Yong Cher, Jacob A Abraham, and
Subhasish Mitra. Quantitative evaluation of soft error injection techniques for
robust system design. In Proceedings of the 50th Annual Design Automation
Conference, page 101. ACM, 2013.

[10] Cristian Constantinescu. Intermittent faults and effects on reliability of integrated
circuits. In Reliability and Maintainability Symposium, page 370. IEEE, 2008.

[11] Jeffrey J Cook and Craig Zilles. A characterization of instruction-level error
derating and its implications for error detection. In International Conference on
Dependable Systems and Networks(DSN), pages 482–491. IEEE, 2008.

[12] Edward W. Czeck and Daniel P. Siewiorek. Observations on the effects of
fault manifestation as a function of workload. IEEE Transactions on Computers,
41(5):559–566, 1992.

[13] Domenico Di Leo, Fatemeh Ayatolahi, Behrooz Sangchoolie, Johan Karlsson,
and Roger Johansson. On the impact of hardware faults–an investigation of
the relationship between workload inputs and failure mode distributions. In
International Conference on Computer Safety, Reliability, and Security, pages 198–
209. Springer, 2012.

[14] Harish Dattatraya Dixit, Sneha Pendharkar, Matt Beadon, Chris Mason, Tejasvi
Chakravarthy, Bharath Muthiah, and Sriram Sankar. Silent data corruptions at
scale. arXiv preprint arXiv:2102.11245, 2021.

[15] Shuguang Feng, Shantanu Gupta, Amin Ansari, and Scott Mahlke. Shoestring:
probabilistic soft error reliability on the cheap. In ACM SIGARCH Computer
Architecture News, volume 38, page 385. ACM, 2010.

[16] Peter Folkesson and Johan Karlsson. The effects of workload input domain on fault
injection results. Citeseer, 1999.

[17] Giorgis Georgakoudis, Ignacio Laguna, Dimitrios S Nikolopoulos, and Martin
Schulz. Refine: Realistic fault injection via compiler-based instrumentation for
accuracy, portability and speed. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, pages 1–14,
2017.

[18] Guanpeng Li, Karthik Pattabiraman, Siva Kumar Sastry Hari, Michael Sullivan
and Timothy Tsai. Modeling soft-error propagation in programs. In IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN). IEEE, 2018.

[19] Luanzheng Guo and Dong Li. Moard: Modeling application resilience to transient
faults on data objects. In 2019 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 878–889. IEEE, 2019.

[20] Luanzheng Guo, Dong Li, and Ignacio Laguna. Paris: Predicting application
resilience using machine learning. Journal of Parallel and Distributed Computing,
2021.

[21] Luanzheng Guo, Dong Li, Ignacio Laguna, and Martin Schulz. Fliptracker: Un-
derstanding natural error resilience in hpc applications. In SC18: International
Conference for High Performance Computing, Networking, Storage and Analysis,
pages 94–107. IEEE, 2018.

[22] Siva Kumar Sastry Hari, Sarita V Adve, and Helia Naeimi. Low-cost program-
level detectors for reducing silent data corruptions. In International Conference
on Dependable Systems and Networks (DSN), pages 1–12. IEEE, 2012.

[23] Siva Kumar Sastry Hari, Sarita V Adve, Helia Naeimi, and Pradeep Ramachandran.
Relyzer: exploiting application-level fault equivalence to analyze application
resiliency to transient faults. In ACM SIGARCH Computer Architecture News,
volume 40, page 123. ACM, 2012.

[24] Randy L Haupt. Optimum population size and mutation rate for a simple real
genetic algorithm that optimizes array factors. In IEEE Antennas and Propagation
Society International Symposium. Transmitting Waves of Progress to the Next
Millennium. 2000 Digest. Held in conjunction with: USNC/URSI National Radio
Science Meeting (C, volume 2, pages 1034–1037. IEEE, 2000.

[25] https://github.com/google/AFL. american fuzzy lop.
[26] https://google.github.io/clusterfuzz/. clusterfuzz.
[27] https://llvm.org/docs/LibFuzzer.html. libfuzzer.
[28] Charu Kalra, Fritz Previlon, Norm Rubin, and David Kaeli. Armorall: Compiler-

based resilience targeting gpu applications. ACM Transactions on Architecture
and Code Optimization (TACO), 17(2):1–24, 2020.

[29] Ignacio Laguna, Martin Schulz, David F Richards, Jon Calhoun, and Luke Olson.
Ipas: Intelligent protection against silent output corruption in scientific applica-
tions. In Proceedings of the 2016 International Symposium on Code Generation and
Optimization, pages 227–238. ACM, 2016.

[30] Chris Lattner and VikramAdve. LLVM: A compilation framework for lifelong pro-
gram analysis & transformation. In International Symposium on Code Generation
and Optimization, page 75. IEEE, 2004.

[31] Dong Li, Zizhong Chen, Panruo Wu, and Jeffrey S Vetter. Rethinking algorithm-
based fault tolerance with a cooperative software-hardware approach. In SC’13:
Proceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis, pages 1–12. IEEE, 2013.

[32] Guanpeng Li and Karthik Pattabiraman. Modeling input-dependent error propa-
gation in programs. In 2018 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pages 279–290. IEEE, 2018.

[33] Guanpeng Li, Karthik Pattabiraman, Chen-Yang Cher, and Pradip Bose. Under-
standing error propagation in GPGPU applications. In International Conference for
High Performance Computing, Networking, Storage and Analysis, pages 240–251.
IEEE, 2016.

[34] Sihuan Li, Sheng Di, Kai Zhao, Xin Liang, Zizhong Chen, and Franck Cappello.
Towards end-to-end sdc detection for hpc applications equipped with lossy com-
pression. In 2020 IEEE International Conference on Cluster Computing (CLUSTER),
pages 326–336. IEEE, 2020.

[35] Yuekang Li, Yinxing Xue, Hongxu Chen, Xiuheng Wu, Cen Zhang, Xiaofei Xie,
Haijun Wang, and Yang Liu. Cerebro: context-aware adaptive fuzzing for effec-
tive vulnerability detection. In Marlon Dumas, Dietmar Pfahl, Sven Apel, and
Alessandra Russo, editors, Proceedings of the ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019, pages
533–544. ACM, 2019.

[36] Zhimin Li, Harshitha Menon, Kathryn Mohror, Peer-Timo Bremer, Yarden Li-
vant, and Valerio Pascucci. Understanding a program’s resiliency through error
propagation. In Proceedings of the 26th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 362–373, 2021.

[37] Robert Lucas, James Ang, Keren Bergman, Shekhar Borkar, William Carlson,
Laura Carrington, George Chiu, Robert Colwell, William Dally, Jack Dongarra,
et al. Doe advanced scientific computing advisory subcommittee (ascac) report:
top ten exascale research challenges. Technical report, USDOE Office of Science
(SC)(United States), 2014.

[38] Abdulrahman Mahmoud, Radha Venkatagiri, Khalique Ahmed, Sasa Misailovic,
Darko Marinov, Christopher W Fletcher, and Sarita V Adve. Minotaur: Adapting
software testing techniques for hardware errors. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 1087–1103, 2019.

[39] George B Mathews. On the partition of numbers. Proceedings of the London
Mathematical Society, 1(1):486–490, 1896.

[40] Harshitha Menon and Kathryn Mohror. Discvar: Discovering critical variables
using algorithmic differentiation for transient faults. ACM SIGPLAN Notices,
53(1):195–206, 2018.

[41] Bin Nie, Ji Xue, Saurabh Gupta, Tirthak Patel, Christian Engelmann, Evgenia
Smirni, and Devesh Tiwari. Machine learning models for gpu error prediction in
a large scale hpc system. In 2018 48th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pages 95–106. IEEE, 2018.

[42] Bin Nie, Lishan Yang, Adwait Jog, and Evgenia Smirni. Fault site pruning for
practical reliability analysis of gpgpu applications. In 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 749–761. IEEE,
2018.

[43] Shirin Nilizadeh, Yannic Noller, and Corina S. Pasareanu. Diffuzz: differential
fuzzing for side-channel analysis. In Joanne M. Atlee, Tevfik Bultan, and Jon
Whittle, editors, Proceedings of the 41st International Conference on Software
Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, pages 176–187.
IEEE / ACM, 2019.

[44] Nahmsuk Oh, Philip P Shirvani, and Edward J McCluskey. Control-flow checking
by software signatures. IEEE Transactions on Reliability, 51(1):111–122, 2002.

[45] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof Fetzer. Specfuzz:
Bringing spectre-type vulnerabilities to the surface. In Srdjan Capkun and
Franziska Roesner, editors, 29th USENIX Security Symposium, USENIX Security
2020, August 12-14, 2020, pages 1481–1498. USENIX Association, 2020.

[46] Lucas Palazzi, Guanpeng Li, Bo Fang, and Karthik Pattabiraman. A tale of two
injectors: End-to-end comparison of ir-level and assembly-level fault injection.
In 2019 IEEE 30th International Symposium on Software Reliability Engineering
(ISSRE), pages 151–162. IEEE, 2019.

[47] Behrooz Sangchoolie, Karthik Pattabiraman, and Johan Karlsson. One bit is (not)
enough: An empirical study of the impact of single and multiple bit-flip errors.
In International Conference on Dependable Systems and Networks (DSN), pages
97–108. IEEE, 2017.

[48] Evgenia Smirni. Practical reliability analysis of gpgpus in the wild: From systems
to applications. In Proceedings of the 2019 ACM/SPEC International Conference on
Performance Engineering, pages 3–3, 2019.

[49] Marc Snir, Robert W Wisniewski, Jacob A Abraham, Sarita V Adve, Saurabh
Bagchi, Pavan Balaji, Jim Belak, Pradip Bose, Franck Cappello, Bill Carlson, An-
drew A Chien, Paul Coteus, Nathan A DeBardeleben, Pedro C Diniz, Christian
Engelmann, Mattan Erez, Saverio Fazzari, Al Geist, Rinku Gupta, Fred Johnson,
Sriram Krishnamoorthy, Sven Leyffer, Dean Liberty, Subhasish Mitra, Todd Mun-
son, Rob Schreiber, Jon Stearley, and Eric Van Hensbergen. Addressing failures
in Exascale computing. The International Journal of High Performance Computing

Peppa-X: Finding Program Test Inputs to Bound Silent Data Corruption Vulnerability in HPC Applications SC ’21, November 14–19, 2021, St. Louis, MO, USA

Applications, 28(2):129–173, 2014.
[50] Jiayi Wei, Jia Chen, Yu Feng, Kostas Ferles, and Isil Dillig. Singularity: pattern

fuzzing for worst case complexity. In Gary T. Leavens, Alessandro Garcia, and Co-
rina S. Pasareanu, editors, Proceedings of the 2018 ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09,
2018, pages 213–223. ACM, 2018.

[51] Jiesheng Wei, Anna Thomas, Guanpeng Li, and Karthik Pattabiraman. Quanti-
fying the accuracy of high-level fault injection techniques for hardware faults.
In 44th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pages 375–382. IEEE, 2014.

[52] Cheng Wen, Haijun Wang, Yuekang Li, Shengchao Qin, Yang Liu, Zhiwu Xu,
Hongxu Chen, Xiaofei Xie, Geguang Pu, and Ting Liu. Memlock: memory usage
guided fuzzing. In Gregg Rothermel and Doo-Hwan Bae, editors, ICSE ’20: 42nd
International Conference on Software Engineering, Seoul, South Korea, 27 June - 19
July, 2020, pages 765–777. ACM, 2020.

[53] Lishan Yang, Bin Nie, Adwait Jog, and Evgenia Smirni. Practical resilience
analysis of gpgpu applications in the presence of single-and multi-bit faults. IEEE
Transactions on Computers, 70(1):30–44, 2020.

[54] Lishan Yang, Bin Nie, Adwait Jog, and Evgenia Smirni. Enabling software
resilience in gpgpu applications via partial thread protection. arXiv preprint
arXiv:2103.02825, 2021.

[55] Lishan Yang, Bin Nie, Adwait Jog, and Evgenia Smirni. Sugar: Speeding up gpgpu
application resilience estimation with input sizing. Proceedings of the ACM on

Measurement and Analysis of Computing Systems, 5(1):1–29, 2021.
[56] Keun Soo Yim, Cuong Pham, Mushfiq Saleheen, Zbigniew Kalbarczyk, and Rav-

ishankar Iyer. Hauberk: Lightweight silent data corruption error detector for
GPGPU. In International Parallel & Distributed Processing Symposium (IPDPS),
page 287. IEEE, 2011.

[57] Li Yu, Dong Li, Sparsh Mittal, and Jeffrey S Vetter. Quantitatively modeling
application resilience with the data vulnerability factor. In SC’14: Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis, pages 695–706. IEEE, 2014.

[58] Yangyong Zhang, Lei Xu, Abner Mendoza, Guangliang Yang, Phakpoom Chin-
prutthiwong, and Guofei Gu. Life after speech recognition: Fuzzing semantic
misinterpretation for voice assistant applications. In 26th Annual Network and
Distributed System Security Symposium, NDSS 2019, San Diego, California, USA,
February 24-27, 2019. The Internet Society, 2019.

[59] Kai Zhao, Sheng Di, Sihuan Li, Xin Liang, Yujia Zhai, Jieyang Chen, Kaiming
Ouyang, Franck Cappello, and Zizhong Chen. Ft-cnn: Algorithm-based fault
tolerance for convolutional neural networks. IEEE Transactions on Parallel &
Distributed Systems, 32(07):1677–1689, 2021.

[60] Rui Zhong, Yongheng Chen, Hong Hu, Hangfan Zhang, Wenke Lee, and Dinghao
Wu. SQUIRREL: testing database management systems with language validity
and coverage feedback. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni
Vigna, editors, CCS ’20: 2020 ACM SIGSAC Conference on Computer and Commu-
nications Security, Virtual Event, USA, November 9-13, 2020, pages 955–970. ACM,
2020.

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
We compiled source code of seven applications using llvm/clang
v3.4 compiler to IR files, and ran our proposed technique with the
compiled IR files as described in the paper. We also conducted large
scale fault injection experiments with the IR files using LLFI for
the initial fault injection study and the baseline results. Finally, in
our case study, we ran Knapsack algorithm and used LLVM pass
implemented to duplicate instructions at application level based on
the proposed selective instruction duplication technique.

Author-Created or Modified Artifacts:

Persistent ID: 10.1145/3476480
Artifact name: Peppa-X workflow

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: i) CPU: Intel(R) Core(TM) i9-10900
CPU @ 2.80GHz, x86_64 architecture, 10 cores/20 threads , ii) Mem-
ory: 64GB

Operating systems and versions: Ubuntu 16.04.7 LTS running
linux kernel 4.4.0-203-generic

Compilers and versions: llvm and clang v3.4

Applications and versions: Benchmarks: Pathfinder, Needle, Par-
ticlefilter, CoMD, Hpccg, Xsbench, FFT

Libraries and versions: LLVM Fault Injector (LLFI) v3.4

Key algorithms: Knapsack and Genetic algorithm

Input datasets and versions: i) llvm/clang v3.4 compiled files from
the source code of seven applications from four standard bench-
marks suites Rodinia, Mantevo , Cesar, SPLASH-2. ii) SDC bounding
results and performance evaluation of our proposed technique and
baseline for each of the seven applications.

	Abstract
	1 introduction
	2 Background
	2.1 Fault Model
	2.2 Terms and Definitions
	2.3 LLVM Compiler
	2.4 Genetic Algorithm

	3 Initial Fault Injection Study
	3.1 Experiment Setup
	3.2 Results and Observations

	4 Methodology
	4.1 Overall Design of Peppa-X
	4.2 Design Details

	5 Evaluation of Peppa-X
	5.1 Bounding SDC Probability of Programs
	5.2 Performance

	6 Case Study: Stress Testing Selective Instruction Duplication
	7 Discussion
	7.1 Other Potential Use Cases
	7.2 Threats To Validity

	8 Related Work
	9 Conclusion
	References

