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Motivation

= DNN has been increasingly deployed in many areas
= Computer vision, NLP, autonomous vehicles (AVs)

= DNN reliability becomes important
= |SO 26262 safety standard requires no more than 10 FIT (10 failures in every 10° hours)
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Taken from [1]

[1] Design of Low-Cost Reliable and Fault-Tolerant 32-Bit One Instruction Core for Multi-Core Systems




Consequences of Error Propagation in DNNs

= Single-bit fault’? - Misclassification of image

Object Identified: | 1 :
Transporting Truck g_b{;;ct Identified:
ir

S5 s
£

Fault-free prediction label: Truck Faulty predicted label: Bird

= Reliability assessment: hardware vs software level
= Software implemented fault injection (FI) simulation has lower cost

- IBWA [2] Understanding Error Propagation in Deep Learning Neural Network (DNN) Accelerators and Applications, SC’17




Albatross

- IBWA [2] Understanding Error Propagation in Deep Learning Neural Network (DNN) Accelerators and Applications, SC’17
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Our Hypothesis

Misclassification

Safety concern of intrinsic algorithmic inaccuracies
S|gn|f|cantly lower than that due to SDC

Ground Truth

DNNs need protection from SDC in safety critical situations

From Safety Critical Perspective of an AV
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Existing DNN Reliability Measurement Tools

TensorFI3

= A fault injector for TensorFlow applications

= Specifically, for TensorFlow 1 applications

TensorFl 24 || Need Support to inject faults in non-sequential DNN
« A fault injector for models with TensorFlow 2

= This only supports sequential models

Most DNN models are non-sequential
= Sequential: VGG16, VGG19

= Non-Sequential: ResNet50, ResNet101, GoogleNet, Xception, DenseNet121, DeseNet169, MobileNet

- IUWA [3] Tensorfi: A configurable fault injector for tensorflow applications, ISSREW’18

[4] https://github.com/DependableSystemsLab/TensorFI2



Our Contributions

= Developed open-source tool, TensorFl+, to support Fl in non-sequential
DNN models

= Proposed new metrics to differentiate safety critical misclassifications

from the perspective of AVs

= Analyzed why DNNs need protection from SDC in safety critical

situations
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TensorFl+ Development
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Keras Execution Flow Changes with TensorFI+

= Operators’ structure changes in TensorFlow 2 are not allowed

= Need Keras API for fault injection and propagation
= Qutput (layer D) = KerasAPI(Destination layer D, Source layer S, Input values of S)
= KerasAPI call to get output of target layer t
= Random bit fip of output of layert

= Previous session gone, need API calls to propagate faulty output to final layer
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Fl in a Sequential Model

IComp4ute - Inject fault
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Issues in Fl in Non-sequential Model

Missing output of layer 3 due
to session lost during FI

KerasAPI(n,5, faulty
output of layer 4)?

Fault propagation

Target layer
for Fl
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Solution: Super Layer

layers after 6 if we

No need to consider
inject fault in layer 3

Super Node Super Node Super Node

= Super layers are not part of any branch
= Any layer after a super layer is not dependent on any layer prior to super layer
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Simulation of Fl with TensorFI+
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Simulation of Fl with TensorFI+
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Simulation of Fl technique of TensorFI+
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Simulation of Fl technique of TensorFI+
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Simulation of Fl technique of TensorFI+
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Simulation of Fl technique of TensorFI+
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Simulation of TensorFI+

Immediate
next super

Immediate
previous
super layer

Finally Compute the output of layer 12 using
only one KerasAPI(12, 10, inputs(10)) call

o IOWA
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Metrics to Differentiate Safety
Critical Misclassification
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Overview: Steps to Define Our Metrics

= Create several groups based on similarity of objects

= Organize all the groups into two supergroups based on safety

concern

= Define two metrics to measure whether a misclassification is

safety critical or not.
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Group Formation

Person

/ Ball player Scuba driver\
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Organize Groups into Two Supergroups

Person Four Wheeler
(Ball player, Scuba < Safety Critical > (Cab, Bus)
driver) ,

Super Group A

Super Group B

: Tools and Household
Small Animals < —
: Non-Safety Crltlcal> Chores
[ (Bullfrog, Goldfish) } [ (Baseball, Binoculars) }

Safety Critical
|eon) A1ojes-uoN




Metrics: SCM and Non-SCM Probability

= Safety Critical Misclassification(SCM) Probability
= Original label is in Supergroup A and the predicted label is in
Supergroup B
= They are from different groups within Supergroup A
= Non-Safety Critical Misclassification(Non-SCM) Probability
= Non-SCM probability complements to SCM probability
= They add up to 100%.
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Benchmark & Experimental Setup

= Demonstrated on 30 popular DNN models
= VGGNets, ResNets, DenseNets

= 2 open-source widely used datasets
= CIFAR-100, ImageNet

= 3000 random fault injections per DNN model

= Measured SDC, SCM and Non-SCM probability in the evaluation
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Results: SDC rates

Dataset Model Top-1 Accuracy SDC Rate
VG16(Sequential) 71.18% 3.53%
ImageNet ResNet50(Non-sequential) 74.76% 1.43%
DenseNet121(Non-sequential) 75.04% 1.20%
VGG19(Sequential) 71.53% 1.23%
CIFAR-100 GoogleNet(Non-sequential) 76.70% 1.57%
Xception(Non-sequential) 77.96% 2.00%

SDC rates range from 0.53% to 2.07% (error bars range from 0.10% to 2.95%)
across different non-sequential DNN models
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Results: Fault Free Inference
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Fl in Correctly Classified Images

Results
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Results: Fl in Misclassified Images
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Conclusion

Built a Fl tool, TensorFI+, for both sequential and non-sequential DNN resilience evaluation

We introduce two new metrics to differentiate safety critical misclassifications.

SCM probability is much higher with FI compared to fault free inference

= Shows the necessity of protecting DNN models from SDC.

Our code is open source at https://github.com/sabuj7177/characterizing DNN_failures

Sabuj Laskar
University of lowa
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https://github.com/sabuj7177/characterizing_DNN_failures

