

Characterizing Deep Learning Neural Network Failures between Algorithmic Inaccuracy and Transient Hardware Fault

Sabuj Laskar, Md Hasanur Rahman, Bohan Zhang, Guanpeng Li

Motivation

- DNN has been increasingly deployed in many areas
 - Computer vision, NLP, autonomous vehicles (AVs)
- DNN reliability becomes important
 - ISO 26262 safety standard requires no more than 10 FIT (10 failures in every 10⁹ hours)

Soft Error

[1] Design of Low-Cost Reliable and Fault-Tolerant 32-Bit One Instruction Core for Multi-Core Systems

Consequences of Error Propagation in DNNs

• Single-bit fault^[2] \rightarrow Misclassification of image

Fault-free prediction label: Truck

Object Identified: Bird

Faulty predicted label: Bird

- Reliability assessment: hardware vs software level
 - Software implemented fault injection (FI) simulation has lower cost

Previous Works Only Consider SDC

IOWA

[2] Understanding Error Propagation in Deep Learning Neural Network (DNN) Accelerators and Applications, SC'17

Not All Misclassifications Are Equal

Our Hypothesis

Misclassification

From Safety Critical Perspective of an AV

Existing DNN Reliability Measurement Tools

TensorFI^[3]

- A fault injector for TensorFlow applications
- Specifically, for TensorFlow 1 applications

TensorFI 2^[4]

Need Support to inject faults in non-sequential DNN models with TensorFlow 2

- A fault injector for
- This only supports sequential models

Most DNN models are non-sequential

- Sequential: VGG16, VGG19
- Non-Sequential: ResNet50, ResNet101, GoogleNet, Xception, DenseNet121, DeseNet169, MobileNet

[3] Tensorfi: A configurable fault injector for tensorflow applications, ISSREW'18[4] https://github.com/DependableSystemsLab/TensorFI2

Our Contributions

- Developed open-source tool, TensorFI+, to support FI in non-sequential DNN models
- Proposed new metrics to differentiate safety critical misclassifications from the perspective of AVs
- Analyzed why DNNs need protection from SDC in safety critical situations

TensorFI+ Development

Keras Execution Flow Changes with TensorFI+

- Operators' structure changes in TensorFlow 2 are not allowed
- Need Keras API for fault injection and propagation
 - Output (layer D) = KerasAPI(Destination layer D, Source layer S, Input values of S)
 - KerasAPI call to get output of target layer t
 - Random bit fip of output of layer t
 - Previous session gone, need API calls to propagate faulty output to final layer

FI in a Sequential Model

Issues in FI in Non-sequential Model

Solution: Super Layer

- Super layers are not part of any branch
- Any layer after a super layer is not dependent on any layer prior to super layer

Simulation of FI with TensorFI+

Simulation of FI with TensorFI+

MDict

Layer 4

Layer 2

Layer 9 Layer 6 Layer 8 Layer 4 Layer 2

Simulation of TensorFI+

Finally Compute the output of layer 12 using only one KerasAPI(12, 10, inputs(10)) call

Metrics to Differentiate Safety Critical Misclassification

Overview: Steps to Define Our Metrics

- Create several groups based on similarity of objects
- Organize all the groups into two supergroups based on safety concern
- Define two metrics to measure whether a misclassification is safety critical or not.

Group Formation

Organize Groups into Two Supergroups

Metrics: SCM and Non-SCM Probability

- Safety Critical Misclassification(SCM) Probability
 - Original label is in Supergroup A and the predicted label is in Supergroup B
 - They are from different groups within Supergroup A
- Non-Safety Critical Misclassification(Non-SCM) Probability
 - Non-SCM probability complements to SCM probability
 - They add up to 100%.

Benchmark & Experimental Setup

- Demonstrated on 30 popular DNN models
 - VGGNets, ResNets, DenseNets
- 2 open-source widely used datasets
 - CIFAR-100, ImageNet
- 3000 random fault injections per DNN model
- Measured SDC, SCM and Non-SCM probability in the evaluation

Results: SDC rates

Dataset	Model	Top-1 Accuracy	SDC Rate
ImageNet	VG16(Sequential)	71.18%	3.53%
	ResNet50(Non-sequential)	74.76%	1.43%
	DenseNet121(Non-sequential)	75.04%	1.20%
CIFAR-100	VGG19(Sequential)	71.53%	1.23%
	GoogleNet(Non-sequential)	76.70%	1.57%
	Xception(Non-sequential)	77.96%	2.00%

SDC rates range from 0.53% to 2.07% (error bars range from 0.10% to 2.95%) across different non-sequential DNN models

Results: Fault Free Inference

Results: FI in Correctly Classified Images

ΙΠΙΛΙΑ

Results: FI in Misclassified Images

Conclusion

- Built a FI tool, TensorFI+, for both sequential and non-sequential DNN resilience evaluation
- We introduce two new metrics to differentiate safety critical misclassifications.
- SCM probability is much higher with FI compared to fault free inference
 - Shows the necessity of protecting DNN models from SDC.
- Our code is open source at <u>https://github.com/sabuj7177/characterizing_DNN_failures</u>

Sabuj Laskar University of Iowa

