
Peppa-X: Finding Program Test Inputs to
Bound Silent Data Corruption

Vulnerability in HPC Applications

Md Hasanur Rahman, Aabid Shamji, Shengjiang Guo, Guanpeng Li

Motivation: Soft Error

M = 0001

A
B
C
D

S

M = 0101

A
B
C
D

S

Soft errors becoming more
common in processors!

Silent Data Corruption (SDC)

Normal Execution

Fault

Error Propagation

SDC

Crash

Benign

Incorrect
Output

Correct Output

Exceptions,
No Output

Software Solutions

Device/Circuit Level

Architectural Level

Operating System Level

Application Level

Impactful Errors

Pr
ot

ec
tio

n
O

ve
rh

ea
d

Soft Error

In
cr

ea
si

ng

Software protection techniques are
more flexible and cost-effective!

Existing Works

• Pruning FI space

• Use various heuristics to reduce the number of FI samples

• e.g., Relyzer [ASPLOS’12]

• Heuristics-based error estimation

• e.g., [DSN’12]

• Systematic modeling of error propagation

• e.g., PVF [HPCA’09], Shoestring [ASPLOS'10], Trident [DSN'18]

Problem

Challenge

• They all focus on single input of a program!
• Default reference input

State space explosion in the program input space

Our Goal

• Bound SDC probability of a program across multiple inputs

• High accuracy

• High efficiency

• In an automated way

Find the program
input with highest

SDC probability

Input space of a program

SDC-bound input

Initial Study

• SDC probabilities of individual instructions

• Though vary, the ranking is stable

Range of Overall SDC prob. Across Multiple Inputs
Red bars indicates SDC Prob. of default reference input

Correlation between Code Coverage and Program SDC
Prob. across Multiple Inputs

Correlation between Rankings of Per-Instruction SDC
Prob. across Multiple Inputs

• Code coverage

• Researchers use it for testing software vulnerabilities

• No correlation

• SDC probability of a program across multiple inputs

• Vary in a large range

• Range up to 11.45% for Hpccg
Insight

Some instructions are always vulnerable
to SDCs regardless of input changes

Our Approach: Overview

• Find the program input that executes the

vulnerable parts of the program more often,

thus obtaining higher SDC probability

• Assign SDC vulnerability score to each instruction

• Use Genetic algorithm (GA) to fuzz the program

• Find the SDC-bound input!

Peppa-X Workflow

Challenge #1

Challenge #2

Need to conduct extensive fault injection simulations
for every instruction to assign the score

Need to know SDC probability to compare candidate
inputs to make optimization decisions by GA

Challenge #1: Deriving SDC Score

• Avoid FI simulations for all instructions

• Reduce FI space by applying pruning

• Use static dataflow dependency analysis

• Static dataflow dependency analysis

• Instructions within same static data dependency

shows similar SDC probabilities
Code Example of Pruning FI space in CoMD

FI-space pruning ratios

• Fuzz for small FI input

• Small workload yet equal code coverage

• FI simulations becomes fast

Peppa-X Workflow

• e.g., avg FI space reduced to 49%

Challenge #2: Fitness Function in Fuzzing

• Avoid repetitive statistical FIs to rank each generated

candidate input by GA

Peppa-X Workflow

• Assign score to each static instruction

• Conduct FI simulations to only those instructions

from pruned FI space.

• Accumulate scores of executed instructions during program

execution

• An estimate for SDC probability of a program input

Experimental Setup

• Fault Model
• Faults in processor pipelines

• LLFI – fault injection tool
• Random single bit-flip

• Accurate to simulate soft error and evaluate SDCs [DSN’17]

• 1000 random faults to evaluate SDC for each given input

• Benchmarks
• 7 open-source benchmarks from different HPC domains

Baseline

Metrics

• Generate random input to find SDC-bound input
• Inject faults to calculate SDC probability of each

random input

Benchmark Application Domains
• Accuracy
• Efficiency

Evaluation: Accuracy

Result of bounding SDC Probability (Y-Axis: SDC probability, X-Axis: No. of Generation in GA)
Conclusion

• Peppa-X finds inputs that have much higher SDC probabilities than
Baseline at the time budgets of selected generations
• e.g., Xsbench: 37.9% by Peppa-X while only 0.7% by Baseline

Evaluation: Accuracy

Baseline performs as good as Peppa-X for few cases!

Evaluation: Accuracy

Heat Maps of SDC vulnerability distribution in the input
space of Hpccg and Pathfinder

Each dot represents an input

• The darker the color, the higher the
SDC Probability

• Most colors are dark for Hpccg
• A randomly sampled input leads to higher

SDC probability

• Easy task for Baseline!

• Most colors are light for Pathfinder
• Difficult for Baseline to find SDC-bound

inputs

Evaluation: Efficiency

• What if we let baseline run for 5x

more time than Peppa-X at 200

generations?

• Why to choose 200 generations?
• Program SDC probabilities are mostly

saturated after 200 generations

Program SDC probabilities bound by Peppa-X at 200 Generation and Baseline
with 5x More Search Time (Y-Axis: SDC Prob. , X-Axis: Benchmarks)

Conclusion
Baseline is still unable to perform as good as Peppa-X

Use Case: Stress Test Selective Inst. Duplication

• Only a small amount of instructions being

responsible for majority of SDCs

• Duplicate only those instructions by applying 0-1

knapsack

• Cost à performance overhead of an instruction if

duplicated

• Benefit à SDC coverage by that duplicated instruction

Use Case: Stress Test Selective Inst. Duplication

Stress test at 50% protection level (Y-Axis: SDC Coverage,
X-Axis: Benchmarks)

• Run the protection with default reference

input and get expected SDC coverage

• Run the protected program with SDC-bound

input

• Inject faults with SDC-bound input

• Measure actual SDC coverage

Conclusion
• Protection is compromised!
• Avg expected coverage is 96.63%
• Avg actual coverage is only 38.02%

Conclusion

• Peppa-X is both accurate and efficient to identify SDC-bound inputs
• Only one time cost for FI simulations

• Leveraging static and dynamic analysis

• Baseline cannot find such SDC-bound inputs even with 5x more search time

• Need extensive FI simulations to evaluate each random input

• Not practical as FI takes long time!

• Our tool is open-sourced: https://github.com/hasanur-rahman/Peppa-X

Md Hasanur Rahman (Hasan)
University of Iowa

mdhasanur-rahman@uiowa.edu
https://hasanur-rahman.github.io/

https://github.com/hasanur-rahman/Peppa-X
mailto:mdhasanur-Rahman@uiowa.edu
https://hasanur-rahman.github.io/

